首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetization distribution is considered in a thin ferromagnetic film of a thickness near the critical value, for which the continuous phase transition from the homogeneous magnetization state to the domain structure appears. The easy axis of the magnetization is perpendicular to the film plane and the anisotropy constant β < 4π. On the basis of the self-consistent theory the vortex-like magnetization distribution in the interdomain wall was obtained. The value of the critical thickness, the period of the domain structure and the amplitudes of the magnetization vector components as dependent on the film parameters were derived.  相似文献   

2.
The magnetization process in an amorphous ribbon with an easy axis perpendicular to its plane has been studied with the three-dimensional neutron depolarization technique. A simplified model of three layers is used, describing the magnetization distribution in the bulk and the two closure domain structures at the surface. Our analysis with this model gives direct experimental evidence that the magnetization process due to an applied magnetic field in the ribbon plane is dominantly accounted for by rotation processes of the local magnetization in the bulk. The influence of different types of closure domain structures on the magnetization distribution during the reversal process are discussed and compared with the experimental results.  相似文献   

3.
The transformation of the domain structure of micrometer-thick films with variations in the induced uniaxial anisotropy constant with the easy magnetization axis perpendicular to the film surface has been investigated using numerical micromagnetic simulation in the framework of a two-dimensional model of the magnetization distribution. The case where the tetra-axial crystallographic anisotropy exists in the film with uniaxial magnetic anisotropy has been considered. The transformation of the open domain structure into the structure with a magnetic flux closed inside the sample has been investigated in detail, and new types of 109-degree and 90-degree vortex-like domain walls and periodic domain structures have been obtained.  相似文献   

4.
The magnetostatic energy and domain structure (DS) in a long ferromagnetic plate of a finite width with in-plane anisotropy are calculated for the case of the domain magnetization vectors lying in the plane of the plate. The situation where the DS period is much shorter than the width but is considerably larger than the thickness of the plate is analyzed in detail. The equilibrium DS period and the width ratio of two adjacent domains are determined as functions of an external magnetic field parallel to the plane of the plate by minimizing the energy. The DS period is found to be proportional to the plate width and the domain wall energy and inversely proportional to the squared saturation magnetization. While the width of the favorable domains (with the magnetization parallel to the field) grows with increasing field, the unfavorable domains, rather than disappearing completely, form relatively narrow transition regions between the favorable domains, i.e., 360° domain walls.  相似文献   

5.
Theoretical and experimental studies of ferromagnetic resonance in single-crystal hexagonal ferrites with different types of magnetocrystalline anisotropy (axis and plane of easy magnetization) are reported. The ferromagnetic resonance is examined in the 12–38 GHz frequency range in the state of homogeneous magnetization and in the presence of a strip domain structure inherent in materials with an axis of easy magnetization. This comprehensive ferromagnetic resonance investigation is shown to allow determination of not only anisotropy fields and g-factors but also saturation magnetization of a material from testing one sample alone. The anisotropy of g-factor of Zn2Y is found experimentally.  相似文献   

6.
陈传文  项阳 《物理学报》2016,65(12):127502-127502
本文以Pt_(84)Co_(16)/TbFeCo双层交换弹簧体系为研究对象,利用微磁学连续模型,研究了软/硬磁层易轴方向相互垂直的新型体系中磁矩的分布特征.研究结果表明,磁矩偏离薄膜法线方向的角度在软磁层中沿膜厚方向的变化速率比硬磁层中的快.通过调节软磁层参数来增加软/硬磁的各向异性常数比、交换能常数比、饱和磁化强度比或外磁场强度,都可有效改变磁矩偏角在软/硬磁层中的变化速率.特别是当软/硬磁各向异性常数比值和交换能常数比值同时增大时,可以使得磁矩在硬磁层中的变化速率快于软磁层中的.而饱和磁化强度比值对磁矩变化速率的影响源于饱和磁化强度的变化会相应地改变各向异性常数,进而改变磁矩在软/硬磁层中磁矩方向变化速率的比值.此体系的磁滞回线显示磁性参数的改变可以显著改变体系的剩磁及饱和磁场.软磁层中的退磁场能及体系的正交各向异性可导致负的成核场.  相似文献   

7.
The layer resolved magnetic moments and magnetic anisotropy energy of Fe/Co superlattices and multilayers with bcc (0 0 1) and (1 1 0) orientations obtained from first principles simulations are reported here. The magnetic moment of Fe atoms are found to depend on the geometry, coordination number and proximity to Co atoms, whereas that of Co remains almost constant in the superlattices and multilayers. Mixing of atoms at the interface resulted in enhanced Fe magnetic moment while that of Co is unaffected. The magnetic anisotropy energy in superlattices and multilayers are found to be larger than the corresponding values of bulk counterparts. Calculated easy axis of magnetization is in the plane for all superlattice compositions considered in the study, while that in multilayers, changes with crystalline orientation and thickness of Co layers.  相似文献   

8.
The effect of induced uniaxial anisotropy on the properties and parameters of the domain structure and phase transitions in yttrium-iron garnet (YIG) films is investigated. Based on the measurements and the derived formulas we determine the difference between the magnetization and the uniaxial anisotropy field for each of the films. We have also measured the parameters of the domain structures and phase transitions of the films for the magnetization parallel and perpendicular to the projections of the [111] crystallographic axes onto the plane of the film. We find that films of pure YIG films grown in (111) are characterized by the existence of some critical value of the uniaxial anisotropy field. It is found that for films in which the uniaxial anisotropy field is larger than this critical value and films in which it is less than this critical value, such parameters of the domain structures as the ratio of the width of the domains to the film thickness, the orientation of the magnetization of the domains, the orientation of the domain boundaries, and the magnitudes of the phase transition fields differ substantially. Fiz. Tverd. Tela (St. Petersburg) 41, 2034–2041 (November 1999)  相似文献   

9.
The domain structure of Fe-Ga bulk alloys is investigated with magnetic force (MFM) and magneto-optic Kerr microscopy. Published domain observations on this class of materials predominantly reveal maze-like domain patterns that indicate out-of-plane magnetization, i.e. out-of-plane anisotropy. Contrary to the belief that this anisotropy is due to the presence of nanoscale heterogeneities [1] and [2] (Bai et al., 2005, 2009), we show that it is due to a damaged surface layer caused by standard mechanical polishing. The surface conditions in Fe-Ga alloys are more sensitive to stress-induced damage than in pure α-Fe. This is explained as being due to increased magnetostriction. We demonstrate that the damaged surface layer can be removed with an additional polishing step using colloidal amorphous silica. On (0 0 1) bulk crystal surfaces, the domain structures, obtained after the removal of the damaged surface layer, reveal in-plane magnetization with sharp and straight 90° and 180° domain walls that are expected in these alloys.  相似文献   

10.
Dynamical solitons in a uniaxial ferromagnet are considered. The second constant of magnetic anisotropy is taken into account. In the case of easy plane anisotropy the explicit form for the magnetization is found. The dispersion laws for obtained solitons are discussed.  相似文献   

11.
The results of experimental and theoretical investigations of ferromagnetic resonance (FMR) in ferrite single crystals having hexagonal structure and magnetocrystalline anisotropy of the easy-axis type are reported. Experiments are carried out on disk-shaped samples of materials differing in anisotropy strength. The values of the effective anisotropy fields and the gyromagnetic ratios (g-factors) of the materials are determined from measured frequency dependences of the FMR field along the easy and hard magnetization directions for homogeneously magnetized samples. It is shown that if the FMR spectra are also measured for the same samples in the presence of a domain structure, then one can experimentally determine not only the above-mentioned parameters but also the saturation magnetization of uniaxial magnetic materials. It is shown that the theory of the FMR frequency spectrum of a partially magnetized sample with a simple domain structure in the form of a system of plane-parallel layers is in good agreement with the experiment.  相似文献   

12.
We have studied the magnetization of a system of γ-Fe2O3 (0.68 vol.%) nanoparticles isolated in an SiO2 amorphous matrix placed in an alternating magnetic field with a frequency of 640 Hz and in the temperature range of (77-300) K. Compared to temperatures closer to 300 K (where the system has a superparamagnetic behaviour), at lower temperatures, the magnetization has a dynamic hysteresis loop due to the magnetization's phase shift between the field and the magnetization. The delay of the magnetization (attributed to the Néel relaxation processes) increases with the decrease of temperature. It has been shown that the relaxation time resulting from the Néel theory is determined by an effective anisotropy constant ( K ) that takes into account the magnetocrystalline anisotropy, as well as the shape, surface and strain anisotropies. In the following we will show that the surface and strain anisotropy components have the most significant influence. When the temperature decreases from 300 to 77 K, the relative increase of the saturation magnetization of the nanoparticles is much higher than that of the (spontaneous) saturation magnetization of bulk γ-Fe2O3. This increase is due to the increase of the mean magnetic diameter of the particles attached to the core of aligned spins, from 10.16 nm to 11.70 nm, as a result of the modification of the superexchange interaction in the surface layer. Received 25 April 2002 / Received in final form 11 August 2002 Published online 14 February 2003 RID="a" ID="a"e-mail: ccaizer@physics.uvt.ro  相似文献   

13.
An effect of nonpolarized white light on the modulated magnetic structure of a FeBO3:Mg single crystal, which arises in this light-plane weak ferromagnet in the low temperature range during technical magnetization, has been revealed. It has been found that the degree of the light action on the magnetic state of FeBO3:Mg depends both on its duration and on the orientation of the spontaneous magnetization vector M of the crystal during illumination. Interpretation of the results obtained has been performed in the context of the “magnetic ripple” theory on the assumption that the absorbed light induces additional uniaxial magnetic anisotropy in the easy plane of the crystal and that the anisotropy axis is collinear to the vector M during illumination.  相似文献   

14.
The domain walls in ultrathin ferromagnetic films with uniaxial magnetic anisotropy are investigated theoretically. It is shown that taking account of the magnetodipole and magnetoelastic interactions leads to the appearance of an effective anisotropy with respect to the direction of the normal to the plane of the wall. The existence of a new type of domain walls—“corner” walls, at which the magnetization vector is rotated in the plane making a certain angle, which depends on the film parameters, with the plane of the domain wall and the static and dynamic properties of these walls are investigated. The dependence of the limiting velocity of the domain walls on the film thickness is found. Zh. éksp. Teor. Fiz. 112, 1476–1489 (October 1997)  相似文献   

15.
The nonlinear dynamic behavior of vortexlike domain walls in magnetic uniaxial films having an in-plane anisotropy was investigated within a rigorous micromagnetic approach in the framework of a two-dimensional magnetization distribution by numerically solving the Landau–Lifshitz equations (with the Gilbert damping parameter) with allowance for all the main interactions, including the dipole–dipole one. The studies were carried out on magnetic soft films with an anisotropy axis lying in their plane in a dc magnetic field parallel to an easy axis and a pulsed magnetic field normal to it. New possibilities for controlling the nonlinear dynamic rearrangement of the internal structure of domain walls and their velocities in fields both above and below the critical field are established. The wall motion in the field above the critical one is nonstationary.  相似文献   

16.
Low-(C 3) symmetry mechanical stresses are used to induce an additional crystalline magnetic anisotropy in the basal plane of a FeBO3 single crystal. The effect of the stress-induced anisotropy on the main magnetic properties of this weak ferromagnet is studied by a magnetooptic method. This additional anisotropy is shown to transform the initial 180° domain structure of iron borate into a structure with domain walls making an angle of ~ 120° with each other in the basal plane of the crystal. However, unlike in the ordinary 120° DW structure, the azimuthal angle of the spontaneous magnetization vectors in the arising domains varies along domain walls. It is found that the stress-induced transformation of the crystal’s domain structure significantly affects the shape of hysteresis loops recorded at quasi-static magnetization, increases the initial magnetooptic susceptibility, and makes the coercive force anisotropic.  相似文献   

17.
18.
The magnetization behavior and the domain pattern in remanence are studied in Co/Pt multilayers. The reorientation of magnetization from perpendicular to in plane is found to happen via the state of canted magnetization. In the transition from an easy axis to an easy plane a stable domain pattern in the in-plane magnetization components is found for Co/Pt multilayers. The analysis of the domain pattern reveals that the magnetization canting is such that all in-plane orientations of magnetization are equally occupied. The found structure is appointed to the cone state.  相似文献   

19.
Changes in the easy axis of magnetization of dysprosium, within the basal plane, between 77 and 160 K and in applied fields up to 1.25 T, reported by Bly et al. [1] have been reinvestigated and some inconsistencies have been resolved. Changes were only confirmed above 132 K, where the b axis is easy just above the critical field. On increasing the applied field the basal plane anisotropy dies away reappearing with the a axis easy. The changeover occurs at field and temperature values very close to those where a magnetoresistance anomaly has been observed by Akhavan et al. [2]. It is shown that this change may be explained in principle, without any change in the crystal field, by the narrowing of a fan-like spin structure occurring as an intermediate phase between the helical anti-ferromagnetic and the ferromagnetic phases. Between 77 and 110 K anomalies in torque curves in low fields are attributed to domain processes.  相似文献   

20.
The extraordinary dynamic properties of single-crystal iron garnet films with magnetic anisotropy in the plane of the film, specifically unidirectional anisotropy of the domain-wall velocity, are explained on the basis of a mechanism of domain-wall motion that incorporates local rotation of the magnetization vector ahead of the moving domain wall, induced by spin waves radiated from the wall and by anisotropy of the dissipative properties of the single-crystal iron garnet film in its plane. Fiz. Tverd. Tela (St. Petersburg) 39, 1421–1427 (August 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号