首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protonation constants of arsenic acid were determined at different ionic strengths in NaClO(4) (0.1, 0.5, 1.0, 3.0 mol dm(-3)), NaCl (0.5 and 1.0 mol dm(-3)) and KCl (0.5, 1.0 and 3.0 mol dm(-3)) ionic media by means of a potentiometric study. The distribution of arsenate species was defined depending on two important variables in natural environments: pH and composition. All the experimentation was performed at 25 degrees C. The differences found in the protonation constants for different medium compositions, were explained by the different behaviour of the interaction parameters of the species considered in the different media and ionic strengths. These parameters were reported for all hydrolitic As(V) species and were calculated using the Modified Bromley's Methodology (MBM). The corresponding thermodynamic stepwise formation constants were also determined (log degrees K(1)=11.58+/-0.01, log degrees K(2)=7.06+/-0.01, log degrees K(3)=2.25+/-0.01). All the results obtained showed not only the importance of the ionic strength but also of the composition of the ionic medium on the distribution of the acid-base species of As(V) as a function of pH in natural waters.  相似文献   

2.
Overall equilibrium constants K' for the formation of molecular complexes of riboflavin with the conjugate forms of different aromatic hydroxy compounds are greater in magnitude than those involving the protonated forms of the hydroxy compounds. There is good agreement between the K(B) values determined by using absorption and emission methods. Based on the magnitude of K(B), it is possible to differentiate between the donor capacities of the hydroxy compounds in the charge transfer complexes with riboflavin. Molecular modeling studies indicate stacking interactions for all the systems in an aqueous medium.  相似文献   

3.
The ion-pair formation constant (K(MLA)(0) in mol(-1) dm(3)) for Li(B15C5)(+) with a picrate ion (Pic(-)) in water was determined by potentiometry with a K(+)-selective electrode at 25 degrees C and an ionic strength of 0, where B15C5 denotes benzo-15-crown-5 ether. Using the concentration equilibrium constants, K(MLA), estimated from this value, the extraction constants (mol(-2) dm(6) unit) of about ten diluents were re-calculated from previously reported extraction data. Also, the distribution constants of an ion-pair complex, Li(B15C5)Pic, between water and the diluents were re-estimated. A disagreement in the determined K(MLA) value between a solvent-extraction method and potentiometry was explained in terms of the Scatchard-Hildebrand equation; it came from the fact that the hydration of Li(I) in Li(B15C5)Pic was larger than that of free B15C5 in water. Then, the previously determined value by the former method was re-estimated using the potentiometric K(MLA) value.  相似文献   

4.
The acid/base surface properties of carbonate free fluorapatite (Ca5(PO4)3F) have been characterised using high precision potentiometric titrations and surface complex modelling. Synthetic carbonate free fluorapatite was prepared and characterised by SEM, XRD, FT-IR and FT-Raman. The specific surface area was determined to be 17.7+/-1.2 m2 g(-1) with BET (N2 adsorption). The titrations were performed at 25+/-0.2 degrees C, within the pH range 5.7-10.8, in 0.10 and 0.50 mol dm(-3) NaNO3 ionic media. Experimental data were interpreted using the constant capacitance model and the software FITEQL 4.0. The surface equilibria: [triple bond]S1OH <==> [triple bond]S1O- + H+ lg betaS(-110) (int), [triple bond]S2OH <==> [triple bond]S2O- + H+ lg betaS(-101) (int) well describes the surface characteristics of synthetic fluorapatite. The equilibrium constants obtained were: lg betaS(-110) (int) = -6.33+/-0.05 and lg betaS(-101) (int) = -8.82+/-0.06 at I = 0.10 mol dm(-3). At the ionic strength 0.50 mol dm(-3), the equilibrium constants were slightly shifted to: lg betaS(-110) (int) = -6.43+/-0.05 and lg betaS(-101) (int) = -8.93+/-0.06. The number of active surface sites, N(s), was calculated from titration data and was found to be 2.95 and 2.34 sites nm(-2) for the ionic strengths 0.10 and 0.50 mol dm(-3), respectively. pH(PZC) or the IEP was found to be 5.7 from Z-potential measurements.  相似文献   

5.
The protolytic behavior of d-gluconic-delta-lactone acid has been studied by means of automated potentiometric titrations at different ionic strengths in the range 0.1相似文献   

6.
Circular dichroism (CD) spectroscopy, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the interaction between copper(II) complex of compartmental Schiff base ligand (L), N,N'-bis(3-hydroxysalicylidene)ethylenediamine, and bovine serum albumin (BSA) in 0.1 mol dm(-3) phosphate buffer solution adjusted to physiological pH 7.0 containing 20% (w/w) dimethylsulfoxide at room temperature. CD spectra show that the interaction of the copper(II) complex with BSA leads to changes in the alpha-helical content of BSA and therefore changes in secondary structure of the protein with the slight red shift (2 nm) in CD spectra. From the voltammetric data, i.e. changes in limiting current with addition of BSA, the binding constant (K) of the interaction of copper(II) complex with BSA was found to be 1.96 x 10(4)dm(3)mol(-1). From the shifts in potential with the addition of BSA, the equilibrium constant ratio (K(2)/K(1)) for the binding of the oxidized Cu(II)L (K(1)) and reduced Cu(I)L (K(2)) species to BSA was found to be 3.77, which shows that the reduced form Cu(I)L is bound more strongly to BSA than the oxidized form Cu(II)L.  相似文献   

7.
The vanadium(IV,V) complexes formed with two aldaric acids (D-saccharic or D-glucaric acid, and mucic or galactaric acid) in aqueous solution were characterised by employing pH-potentiometry, EPR, multinuclear NMR and UV-VIS spectroscopy. The stoichiometry and stability constants of the complexes formed were determined at 25 degrees C and ionic strength I= 0.2 mol dm(-3)(KCl). The spectral measurements revealed that vanadium(IV,V) coordinates first at the terminal COO(-) functions, forming mononuclear complexes. At pH > 3, through the metal ion-induced deprotonation and coordination of the neighbouring alcoholic functions, (COO(-), O(-)) coordinated dinuclear complexes are formed, which predominate in the pH range 4-8. In the basic pH range, the ligand molecules are displaced and binary metal hydroxo and oxo complexes are present. EPR measurements at room temperature and at 140 K proved that formation of the VO(iv) dimers is more enhanced at room temperature, but at 140 K their dissociation is favoured. An interesting pH-dependent cis-trans isomeric equilibrium was assumed and analysed by EPR and molecular modelling in the case of the complexes [(VO)(2)L(2)H(x)](x=-2 and -4). Joint evaluation of the pH-potentiometric and (51)V NMR measurements revealed that both aldaric acids are able to bind an excess of vanadium(V), through the formation of oligomeric 2:1 and 3:2 species, besides the 2:2 species formed with VO(IV).  相似文献   

8.
王柯敏  俞汝勤 《化学学报》1988,46(11):1087-1092
用亲脂的长链四烷基锡作中性载体制备亚硝酸根选择性电极. 其选择性模式与经典的阴离子交换剂相比有显著不同, 相对硝酸根的电位选择性系数改善约4个数量级. 线性响应区间为1x10^-^1-2x10^-^5mol.dm^-^3, 检测下限为5x10^-^6mol.dm^-^3. 电极斜率在弱性介质中为Nernst响应, 在弱酸性介质中为两倍Nernst响应. 紫外光谱研究发现酸度影响载体与阴离子的多级配位平衡. 电极斜率的变化与此平衡密切相关, 在此基础上给出了对电极斜率的异常变化及电位-pH  相似文献   

9.
Bidoglio G  Grenthe I  Qi P  Robouch P  Omentto N 《Talanta》1991,38(9):999-1008
Complexation of Eu and Tb with fulvic acids (FA) has been studied by time-resolved laser-induced fluorescence. The lanthanide species are excited by a pulsed Xe/Cl excimer laser and the short-lived luminescence of the fulvic acids is eliminated by time gating. The conditional binding constants (K') and the total metal-binding capacities of the fulvic acids have been determined from the equilibrium titration curves. No significant variations of the log K' values (about 6) have been found in the pH range investigated (2.7, 5.5, 6.5) at ionic strengths of 0.1 and 1M (NaClO(4)). An inverse relationship of K' to total metal concentration is observed. Substitution of Eu for Al has been found to depress the fluorescence signal of the Eu-FA complex. The binding constants of Al(3+) and Eu(3+), derived from the competition experiments, are of the same order of magnitude. The effect of competition on metal binding and trace-metal transport is discussed.  相似文献   

10.
Cation-cation interactions between NpO(2)(+) and UO(2)(2+) were studied at different temperatures (283.15 K to 358.15 K) and different ionic strengths (3-4.5 mol dm(-3)) by spectrophotometry and microcalorimetry. The cation-cation complex between NpO(2)(+) and UO(2)(2+) was weak and became stronger as the temperature was increased from 283.15 K to 358.15 K. The molar enthalpy of complexation was directly determined for the first time by microcalorimetry to be (4.2 ± 1.6) kJ mol(-1) at 298.15 K, in good agreement with the trend in the stability constant at different temperatures. The small and positive enthalpy and entropy of complexation support the argument that the cation-cation complex between NpO(2)(+) and UO(2)(2+) is of inner-sphere type. At each temperature, the stability constants of the cation-cation complex were found to increase as the ionic strength was increased. The specific ion interaction theory (SIT) was used to obtain the stability constants at infinite dilution and variable temperatures.  相似文献   

11.
Fisetin (3,3',4',7-tetrahydroxyflavone) has been investigated for its ability to bind iron in a wide range of pH values of acetate and phosphate buffered solutions. To assess the relevant interactions of iron with fisetin, combined spectroscopic (UV/visible, Raman, MS) and theoretical approaches were used. The chelation sites, stoichiometry, stability and the dependence of the complexes structures on pH were defined. The results pointed to the formation of two iron-fisetin complexes with stoichiometries of 1 : 1 and 1 : 2, depending on the pH. Results of vibrational analysis and theoretical calculations implicated the 3-hydroxyl-4-carbonyl group as a chelating site in acidic media while catechol (3'-hydroxyl-4'-hydroxyl) group was identified as the chelating group in neutral and alkaline media. Determined relative, conditional, stability constants with iron-fisetin were in the range from 6 × 10(4) dm(3) mol(-1) to 7 × 10(9) dm(6) mol(-2). Competition experiments demonstrated that fisetin bound iron less strongly than EDTA and citric acid under the investigated experimental conditions. Rate constant values calculated for the fast step of the DPPH reduction for fisetin and the iron-fisetin complex are k(1) = 225.75 dm(3) mol(-1) s(-1) and k(1) = 658.00 dm(3) mol(-1) s(-1). These values fit within the interval of the rate constant values which are typical for antioxidants which have a single polyphenolic nucleus. The equilibrium geometries, optimized at the B3LYP/6-311 + G(d,p) and M06/6-311 + G(d,p) levels of theory, predicted structural modifications between the ligand molecule in the free state and in the complex structure. The theoretical model has been validated by both vibrational and electronic spectroscopies.  相似文献   

12.
The adsorption equilibrium of a glycoprotein, fructosyltransferase from Aureobasidium pullulans, on an anion-exchange resin, Sepabeads FP-DA activated with 0.1M NaOH, was investigated. The adsorption isotherms were determined at 20 degrees C in a phosphate-citrate buffer with pH 6.0 using the static method. Sodium chloride was used to adjust the ionic strength in the range from 0.0215 to 0.1215 mol dm(-3) which provided conditions varying from a weak effect of salt concentration on protein binding to its strong suppression. The equilibrium data were very well fitted by means of the steric mass-action model when the ion-exchange capacity of 290 mmol dm(-3) was obtained from independent frontal column experiments. The model fit provided the protein characteristic charge equal to 1.9, equilibrium constant 0.326, and steric factor 1.095 x 10(5).  相似文献   

13.
alpha-Cyclodextrin, beta-cyclodextrin, N-(6(A)-deoxy-alpha-cyclodextrin-6(A)-yl)-N'6(A)-deoxy-beta-cyclodextrin-6(A)-yl)urea and N,N-bis(6(A)-deoxy-beta-cyclodextrin-6(A)-yl)urea (alphaCD, betaCD, 1 and 2) form inclusion complexes with E-4-tert-butylphenyl-4'-oxyazobenzene, E-3(-). In aqueous solution at pH 10.0, 298.2 K and I = 0.10 mol dm(-3)(NaClO(4)) spectrophotometric UV-visible studies yield the sequential formation constants: K(11) = (2.83 +/- 0.28) x 10(5) dm(3) mol(-1) for alphaCD.E-(-), K(21) = (6.93 +/- 0.06) x 10(3) dm(3) mol(-1) for (alphaCD)(2).E-3(-), K(11) = (1.24 +/- 0.12) x 10(5) dm(3) mol(-1) for betaCD.E-(-), K(21) = (1.22 +/- 0.06) x 10(4) dm(3) mol(-1) for (betaCD)(2).E-(-), K(11) = (3.08 +/- 0.03) x 10(5) dm(3) mol(-1) for .E-3(-), K(11) = (8.05 +/- 0.63) x 10(4) dm(3) mol(-1) for .E-3(-) and K(12) = (2.42 +/- 0.53) x 10(4) dm(3) mol(-1) for .(E-3(-))(2). (1)H ROESY NMR studies show that complexation of E-3(-) in the annuli of alphaCD, betaCD, 1 and 2 occurs. A variable-temperature (1)H NMR study yields k(298 K)= 6.7 +/- 0.5 and 5.7 +/- 0.5 s(-1), DeltaH = 61.7 +/- 2.7 and 88.1 +/- 4.2 kJ mol(-1) and DeltaS = -22.2 +/- 8.7 and 65 +/- 13 J K(-1) mol(-1) for the interconversion of the dominant includomers (complexes with different orientations of alphaCD) of alphaCD.E-3(-) and (alphaCD)(2).E-3(-), respectively. The existence of E-3(-) as the sole isomer was investigated through an ab initio study.  相似文献   

14.
Kinetics of adsorption of p-hydroxy benzoate and phthalate on hematite-electrolyte interface were investigated at a constant ionic strength, I = 5 x 10(-4) mol dm(-3), pH 5 and at three different temperatures. The state of equilibrium for the adsorption of p-hydroxy benzoate onto hematite surfaces was attained at 70 h, whereas it was 30 h for phthalate-hematite system. None of the three kinetics models (Bajpai, pseudo first order and pseudo second order) is applicable in the entire experimental time period; however, the pseudo second order kinetics model is considered to be better than the pseudo first order kinetics model in estimating the equilibrium concentration both the p-hydroxy benzoate-hematite and phthalate-hematite systems. The variation of adsorption density of p-hydroxy benzoate and phthalate onto hematite surfaces as a function of concentration of adsorbate was studied over pH range 5-9 at a constant ionic strength, I = 5 x 10(-4) mol dm(-3) and at constant temperature. The adsorption isotherms for both the systems were Langmuir in nature and the maximum adsorption density (Gamma(max)) of p-hydroxy benzoate is approximately 1.5 times more than that of phthalate on hematite at pH 5 and 30 degrees C in spite of an additional carboxylic group at ortho position in phthalate. This is due to the more surface area coverage by phthalate than that of p-hydroxy benzoate on hematite surface. The activation energy was calculated using Arrhenius equation and the activation energy for adsorption of p-hydroxy benzoate at hematite-electrolyte interface is approximately 1.8 times more than that of phthalate-hematite system. The negative Gibbs free energy indicates that the adsorption of p-hydroxy benzoate and phthalate on hematite surfaces is favourable. The FTIR spectra of p-hydroxy benzoate and phthalate after adsorption on hematite surfaces were recorded for obtaining the bonding properties of adsorbates. The phenolic nu(CO) appears at approximately 1271 cm(-1) after adsorption of p-hydroxy benzoate on hematite surfaces, which shifted by 10 cm(-1) to higher frequency region. The phenolic group is not deprotonated and is not participating in the surface complexation. The shifting of the nu(as)(COO-) and nu(s)(COO-) bands and non-dissolution of hematite suggest that the p-hydroxy benzoate and phthalate form outer-sphere surface complex with hematite surfaces in the pH range of 5-7.  相似文献   

15.
The protonation equilibrium of the Tris(Hydroxymethyl)aminomethane (TRIS) has been studied using an automated potentiometric system. The temperature was kept constant at 25 degrees C and the ionic strength was 0.1, 0.5, 1.0, 2.0 and 3.0 mol dm(-3) in NaClO(4). The experimental constants, obtained at different ionic strengths, were correlated by means of the modified Bromley methodology (MBM) and the thermodynamic protonation constant found to be log (0)beta = 8.07 +/- 0.01 . Those values together with some others for NaCl medium were used to construct a thermodynamic model on both molal and molar scales for the protonation equilibrium of TRIS.  相似文献   

16.
Trans-1-acceptor-2-donor-substituted cyclohexanes (1), as well as their 4- (or 5-)methyl-substituted homologues (2), have been prepared and are shown to form intramolecular charge-transfer (donor-acceptor) complexes. These weak complexes are turned on and off by the chair-chair interconversion of the cyclohexane ring. The CT absorptions have been measured and the equilibrium constants for the ring reversal have been determined by UV/vis spectroscopy at 298 K, as well as by NMR spectroscopy at two temperatures: at 183 K, by direct comparison of signals due to the two chair conformations, and at 300 K, by comparison of calculated and measured widths of the alpha-proton signals. The Gibbs free energies assigned to the donor-acceptor interactions range between 0 and -1 kcal mol(-1). A crystal structure of one of the complexes (1b) confirms the intramolecular donor-acceptor alignment and interaction. The regioisomers of the methyl-substituted complexes were characterized by NOE interaction between the methyl and an alpha-proton cis to it.  相似文献   

17.
We investigated the binding of sodium dodecyl sulfate (SDS) to various linear and star polymers of the nonionic methoxyhexa(ethylene glycol) methacrylate (PMHEGMA) and the ionic 2-(dimethylamino)ethyl methacrylate (PDMAEMA), the latter being a polycation at low pH. The dodecyl sulfate ion selective electrode (EMF), isothermal titration calorimetry (ITC), and surface tension (ST) were applied to gain detailed information about interactions. In all cases there is evidence of significant binding of SDS over an extensive SDS concentration range spanning from ca. 10(-6) to 0.1 mol dm(-3). At pH 3, the polymer PDMAEMA is a strong polycation and here the binding is dominated by electrostatic 1:1 charge neutralization with the anionic surfactant. At their natural pH of 8.6, PMHEGMA and PDMAEMA polymers are essentially nonionic and bind SDS in the form of polymer-bound aggregates in the concentration range of ca. 1 x 10(-3) to 3 x 10(-2) mol dm(-3). All the polymers also bind SDS to a lesser extent at concentrations below 1 x 10(-3) mol dm(-3) reaching as low as 10(-7) mol dm(-3). This low concentration binding process involves the polymer and nonassociated SDS monomers. As far as we are aware, this is the first example that such a low concentration noncooperative binding process could be observed in SDS/neutral polymer systems by EMF and ST. We also showed that the nonionic surfactant hexa(ethylene glycol) mono-n-dodecyl ether (C12EO6) and the cationic cetyltrimethylammonium bromide (C16TAB) interact with star PDMAEMA. We believe that the interaction of C12EO6 and CTAB is of similar noncooperative type as the first SDS binding process in the range from ca. 10(-5) to 0.3 x 10(-3) mol dm(-3). At the high concentration binding limit Csat of SDS, the above polymers become fully saturated with bound SDS micelles. We applied small angle neutron scattering (SANS) to determine the structure and aggregation numbers of the star polymer/bound SDS micelles and calculated the stoichiometry of such supramolecular complexes. The SANS data on PDMAEMA star polymers in the presence of C12EO6 showed only a limited monomer binding in contrast to linear PDMAEMA, which showed monomer C12EO6 binding at low concentrations but micellar aggregates at 6 x 10(-3) mol dm(-3).  相似文献   

18.
The adsorption of the lanthanides (except for Pm) on the zeolite Y was investigated under various solution conditions of nitrate ion concentration ([NO(-)(3)]: 0.001-2 mol/dm(3)) and total lanthanide concentration (from 0.0001 to 0.001 mol/dm(3)). The solutions of the lanthanide nitrates were equilibrated with the zeolite samples at 296 K. The concentrations of lanthanides in the initial and equilibrium solutions were determined by means of spectrophotometrical method with Arsenazo III reagent and distribution constants K(d) of the lanthanides between aqueous and zeolite phases were calculated. The evident concave tetrad effect in the change of logK(d) values (nitrate concentrations 0.4-2 mol/dm(3)) within the lanthanide series was noticed and an attempt at its explanation through the comparison of covalence in LnO bonds existing in triple bond AlO(1/3Ln)Si triple bond species in the zeolite phase and in Ln(NO(3))(2+) complexes forming in the aqueous phase was presented. The weak convex tetrad effect for equilibrium nitrate concentrations 0.001-0.32 mol/dm(3), manifesting in the change of logK(d) values and in the alteration of logK (adsorption constants), is evidence of the complexation of the tripositive lanthanide ions by the oxygens originating both from water molecules and from the zeolite framework.  相似文献   

19.
Halámek E  Kobliha Z  Soucek J 《Talanta》1993,40(2):287-289
The spectrophotometric determination of the substance dibenzo [b,f]-1,4-oxazepine (CR) the form of an ionic associate with the anionactive dyes of the type of azo dyes, sulphonephthaleins and anthraquinones after extraction with chloroform was worked out. Conditional extraction constants K'(ex) were calculated and equilibrium ratios D and extraction yields E of ionic associates were determined. On the basis of detection limit L(Q), the dyes Alizarine Black S (0.7 microg/ml) and Orange II (0.8 microg/ml) were recommended for extractive spectrophotometric determination of the substance CR.  相似文献   

20.
The speciation in the mixed Th(IV)-Fe(III) system has been studied in aqueous solution in the pH range of 2.0-4.8. In the individual systems iron(III) and thorium(IV) hydrolyze easily and hydrolysis products precipitate at approximately pH ≥ 2.0 and 4.0, respectively, at the metal concentrations used in this study, 0.02-0.05 mol dm(-3). In the mixed Th(IV)-Fe(III) system precipitation of ferrihydrite takes place after months of storage at low pH values, 2.0 (six-line ferrihydrite) and 2.3 (two-line ferrihydrite), as identified by X-ray powder diffraction. In the pH range 2.9-4.5 no precipitation was observed after 24 months. Two thorium(IV)-iron(III) solutions with pH = 2.9, C(Th) = 0.02 and 0.05 mol dm(-3) and C(Fe) = 0.02 mol dm(-3), were studied by extended X-ray absorption fine structure, EXAFS, using the Fe K and Th L(3) edges, and a third solution with pH = 2.9 and C(Th) = C(Fe) = 0.40 mol dm(-3) by large angle X-ray scattering, LAXS, to determine the structure of the predominating species. A heteronuclear hydrolysis complex with the composition [Th(2)Fe(2)(μ(2)-OH)(8)(H(2)O)(12)](6+) is proposed to form in solution, with Th···Th, Th···Fe and Fe···Fe distances of 3.94(2) and 3.96(2), 3.41(3) and 3.43(2), 3.04(2) and 3.02(4) ?, as determined by EXAFS and LAXS, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号