首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To the best of our knowledge, till now there is no method described in literature to find exact fuzzy optimal solution of balanced as well as unbalanced fully fuzzy multi-objective transportation problems. In this paper, a new method named as Mehar??s method, is proposed to find the exact fuzzy optimal solution of fully fuzzy multi-objective transportation problems (FFMOTP). The advantages of the Mehar??s method over existing methods are also discussed. To show the advantages of the proposed method over existing methods, some FFMOTP, which cannot be solved by using any of the existing methods, are solved by using the proposed method and the results obtained are discussed. To illustrate the applicability of the Mehar??s method, a real life problem is solved.  相似文献   

2.
To the best of our knowledge till now there is no method in the literature to find the exact fuzzy optimal solution of unbalanced fully fuzzy transportation problems. In this paper, the shortcomings and limitations of some of the existing methods for solving the problems are pointed out and to overcome these shortcomings and limitations, two new methods are proposed to find the exact fuzzy optimal solution of unbalanced fuzzy transportation problems by representing all the parameters as LR flat fuzzy numbers. To show the advantages of the proposed methods over existing methods, a fully fuzzy transportation problem which may not be solved by using any of the existing methods, is solved by using the proposed methods and by comparing the results, obtained by using the existing methods and proposed methods. It is shown that it is better to use proposed methods as compared to existing methods.  相似文献   

3.
Several fuzzy approaches can be considered for solving multiobjective transportation problem. This paper presents a fuzzy goal programming approach to determine an optimal compromise solution for the multiobjective transportation problem. We assume that each objective function has a fuzzy goal. Also we assign a special type of nonlinear (hyperbolic) membership function to each objective function to describe each fuzzy goal. The approach focuses on minimizing the negative deviation variables from 1 to obtain a compromise solution of the multiobjective transportation problem. We show that the proposed method and the fuzzy programming method are equivalent. In addition, the proposed approach can be applied to solve other multiobjective mathematical programming problems. A numerical example is given to illustrate the efficiency of the proposed approach.  相似文献   

4.
There are several methods in the literature for solving transportation problems by representing the parameters as normal fuzzy numbers. Chiang [J. Chiang, The optimal solution of the transportation problem with fuzzy demand and fuzzy product, J. Inform. Sci. Eng. 21 (2005) 439-451] pointed out that it is better to represent the parameters as (λρ) interval-valued fuzzy numbers instead of normal fuzzy numbers and proposed a method to find the optimal solution of single objective transportation problems by representing the availability and demand as (λρ) interval-valued fuzzy numbers. In this paper, the shortcomings of the existing method are pointed out and to overcome these shortcomings, a new method is proposed to find solution of a linear multi-objective transportation problem by representing all the parameters as (λρ) interval-valued fuzzy numbers. To illustrate the proposed method a numerical example is solved. The advantages of the proposed method over existing method are also discussed.  相似文献   

5.
Lotfi et al. [Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution, Appl. Math. Modell. 33 (2009) 3151–3156] pointed out that there is no method in literature for finding the fuzzy optimal solution of fully fuzzy linear programming (FFLP) problems and proposed a new method to find the fuzzy optimal solution of FFLP problems with equality constraints. In this paper, a new method is proposed to find the fuzzy optimal solution of same type of fuzzy linear programming problems. It is easy to apply the proposed method compare to the existing method for solving the FFLP problems with equality constraints occurring in real life situations. To illustrate the proposed method numerical examples are solved and the obtained results are discussed.  相似文献   

6.
Ghatee and Hashemi [M. Ghatee, S.M. Hashemi, Ranking function-based solutions of fully fuzzified minimal cost flow problem, Inform. Sci. 177 (2007) 4271–4294] transformed the fuzzy linear programming formulation of fully fuzzy minimal cost flow (FFMCF) problems into crisp linear programming formulation and used it to find the fuzzy optimal solution of balanced FFMCF problems. In this paper, it is pointed out that the method for transforming the fuzzy linear programming formulation into crisp linear programming formulation, used by Ghatee and Hashemi, is not appropriate and a new method is proposed to find the fuzzy optimal solution of multi-objective FFMCF problems. The proposed method can also be used to find the fuzzy optimal solution of single-objective FFMCF problems. To show the application of proposed method in real life problems an existing real life FFMCF problem is solved.  相似文献   

7.
Genetic algorithms (GAs) pose several problems. Probably, the most important one is that the search ability of ordinary GAs is not always optimal in the early and final stages of the search because of fixed GA parameters. To solve this problem, we proposed the fuzzy adaptive search method for genetic algorithms (FASGA) that is able to tune the genetic parameters according to the search stage by the fuzzy reasoning. In this paper, a fuzzy adaptive search method for parallel genetic algorithms (FASPGA) is proposed, in which the high-speed search ability of fuzzy adaptive tuning by FASGA is combined with the high-quality solution finding capacity of parallel genetic algorithms. The proposed method offers improved search performance, and produces high-quality solutions. Moreover, we also propose FASPGA with an operation of combining dynamically sub-populations (C-FASPGA) which combines two elite islands in the final stage of the evolution to find a better solution as early as possible. Simulations are performed to confirm the efficiency of the proposed method, which is shown to be superior to both ordinary and parallel genetic algorithms.  相似文献   

8.
为了获得运输的规模经济效应,本文研究了一种考虑订单合并和货物转运的零担多式联运路径优化问题。首先,以总运输成本为目标函数,以网络中的运输工具容量、可以提供的运输工具最大数量、运输工具服务的关闭时间以及订单时间窗为约束,构建混合整数规划模型,在模型中允许多个订单进行合并运输并考虑运输过程中的转运成本。其次,由于多式联运路径优化问题是典型的NP-hard问题,为了快速求解该模型,开发了一种可以快速为该问题提供近似最优解和下界的列生成启发式算法。最后,生成并测试了大量算例,结果表明所开发的列生成启发式算法可以在较短的时间内提供高质量的近似最优解。文章所构建的模型和开发的列生成启发式算法可以为零担自营多式联运物流企业提供高效的决策支持。  相似文献   

9.
Mukherjee and Basu proposed a new method for solving fuzzy assignment problems. In this paper, some fuzzy assignment problems and fuzzy travelling salesman problems are chosen which cannot be solved by using the fore-mentioned method. Two new methods are proposed for solving such type of fuzzy assignment problems and fuzzy travelling salesman problems. The fuzzy assignment problems and fuzzy travelling salesman problems which can be solved by using the existing method, can also be solved by using the proposed methods. But, there exist certain fuzzy assignment problems and fuzzy travelling salesman problems which can be solved only by using the proposed methods. To illustrate the proposed methods, a fuzzy assignment problem and a fuzzy travelling salesman problem is solved. The proposed methods are easy to understand and apply to find optimal solution of fuzzy assignment problems and fuzzy travelling salesman problems occurring in real life situations.  相似文献   

10.
Uncertain solid transportation problems   总被引:3,自引:0,他引:3  
The solid transportation problem arises when bounds are given on three item properties. Usually, these properties are source, destination and type of product or mode of transport, and often are given in a uncertain way. This paper deals with two of the ways in which uncertainty can appear in the problem: Interval solid transportation problem and fuzzy solid transportation problem. The first arises when data problem are expressed as intervals instead of point values, and the second when the nature of the information is vague. Both models are treated in the case in which the uncertainty affects only the constraint set. For interval case, an auxiliary problem is obtained in order to find a solution. This auxiliary problem is a standard solid transportation problem which can be solved with the efficient methods existing. For fuzzy case, a parametric approach which makes it possible to find a fuzzy solution to the former problem is used.  相似文献   

11.
The concept of fuzzy scalar (inner) product that will be used in the fuzzy objective and inequality constraints of the fuzzy primal and dual linear programming problems with fuzzy coefficients is proposed in this paper. We also introduce a solution concept that is essentially similar to the notion of Pareto optimal solution in the multiobjective programming problems by imposing a partial ordering on the set of all fuzzy numbers. We then prove the weak and strong duality theorems for fuzzy linear programming problems with fuzzy coefficients.  相似文献   

12.
产地间或销地间往往存在竞争,在这种情况下,使用运输问题最优化方法是不合理的。因此,从个体理性的视角提出运输问题的合作对策求解方法,方法将运输问题看作是一个博弈问题,各个产地或销地是博弈的局中人,求解其纳什均衡与纳什讨价还价解。在此基础上,说明了运输问题的非合作形式是一个指派问题,并证明指派问题的最优解是一个纳什均衡点。接着,通过实验验证运输问题的最优解是一个纳什讨价还价解,满足产地或销地的自身利益。在此基础上,针对纳什讨价还价解不唯一的问题,从决策者的视角给出最大可能激励成本的计算方法。最后,为弥补纳什讨价还价解不唯一及纳什讨价还价解不允许出现子联盟的缺陷,给出运输收益分配或成本分摊的Shapely值计算方法。  相似文献   

13.
研究运输成本信息为一般模糊数的模糊运输问题.首先,在保持一般模糊数的核不变的条件下,建立一般模糊数与一般梯形模糊数的距离最小优化模型,通过求解模型得到一般模糊数的一般梯形模糊逼近算子,并给出该逼近算子具有的性质如数乘不变性、平移不变性、连续性等.然后利用该逼近算子将一般模糊运输信息表转换成一般梯形模糊运输信息表,再根据已有GFLCM和GFMDM算法得到模糊运输问题的近似最优解,最后给出具体算例分析说明方法的有效性和合理性.  相似文献   

14.
In a recent paper, Ganesan and Veermani [K. Ganesan, P. Veeramani, Fuzzy linear programs with trapezoidal fuzzy numbers, Ann. Oper. Res. 143 (2006) 305–315] considered a kind of linear programming involving symmetric trapezoidal fuzzy numbers without converting them to the crisp linear programming problems and then proved fuzzy analogues of some important theorems of linear programming that lead to a new method for solving fuzzy linear programming (FLP) problems. In this paper, we obtain some another new results for FLP problems. In fact, we show that if an FLP problem has a fuzzy feasible solution, it also has a fuzzy basic feasible solution and if an FLP problem has an optimal fuzzy solution, it has an optimal fuzzy basic solution too. We also prove that in the absence of degeneracy, the method proposed by Ganesan and Veermani stops in a finite number of iterations. Then, we propose a revised kind of their method that is more efficient and robust in practice. Finally, we give a new method to obtain an initial fuzzy basic feasible solution for solving FLP problems.  相似文献   

15.
In this paper, we have introduced a Solid Transportation Problem where the constrains are mixed type. The model is developed under different environment like, crisp, fuzzy and intuitionistic fuzzy etc. Using the interval approximation method we defuzzify the fuzzy amount and for intuitionistic fuzzy set we use the ($\alpha,\beta$)-cut sets to get the corresponding crisp amount. To find the optimal transportation units a time and space based with order of convergence $O (MN^2)$ meta-heuristic Genetic Algorithm have been proposed. Also the equivalent crisp model so obtained are solved by using LINGO 13.0. The results obtained using GA treats as the best solution by comparing with LINGO results for this present study. The proposed models and techniques are finally illustrated by providing numerical examples. Degree of efficiency have been find out for both the algorithm.  相似文献   

16.
In this paper, we deal with a real problem on production and transportation in a housing material manufacturer, and consider a production and transportation planning under the assumption that the manufacturer makes multiple products at factories in multiple regions and the products are in demand in each of the regions. First, we formulate mixed zero–one programming problems such that the cost of production and transportation is minimized subject to capacities of factories and demands of regions. Second, to realize stable production and satisfactory supply of the products in fuzzy environments, fuzzy programming for the production and transportation problem is incorporated. Finally, under the optimal planning of production and transportation, we show a profit and cost allocation by applying a solution concept from game theory. Using actual data, we show usefulness of the fuzzy programming and a rational allocation scheme of the profit and cost.  相似文献   

17.
The paper presents a metaheuristic method for solving fuzzy multi-objective combinatorial optimization problems. It extends the Pareto simulated annealing (PSA) method proposed originally for the crisp multi-objective combinatorial (MOCO) problems and is called fuzzy Pareto simulated annealing (FPSA). The method does not transform the original fuzzy MOCO problem to an auxiliary deterministic problem but works in the original fuzzy objective space. Its goal is to find a set of approximately efficient solutions being a good approximation of the whole set of efficient solutions defined in the fuzzy objective space. The extension of PSA to FPSA requires the definition of the dominance in the fuzzy objective space, modification of rules for calculating probability of accepting a new solution and application of a defuzzification operator for updating the average position of a solution in the objective space. The use of the FPSA method is illustrated by its application to an agricultural multi-objective project scheduling problem.  相似文献   

18.
Markowitz的均值-方差模型在投资组合优化中得到了广泛的运用和拓展,其中多数拓展模型仅局限于对随机投资组合或模糊投资组合的研究,而忽略了实际问题同时包含了随机信息和模糊信息两个方面。本文首先定义随机模糊变量的方差用以度量投资组合的风险,提出具有阀值约束的最小方差随机模糊投资组合模型,基于随机模糊理论,将该模型转化为具有线性等式和不等式约束的凸二次规划问题。为了提高上述模型的有效性,本文以投资者期望效用最大化为压缩目标对投资组合权重进行压缩,构建等比例-最小方差混合的随机模糊投资组合模型,并求解该模型的最优解。最后,运用滚动实际数据的方法,比较上述两个模型的夏普比率以验证其有效性。  相似文献   

19.

In this study we investigate the single source location problem with the presence of several possible capacities and the opening (fixed) cost of a facility that is depended on the capacity used and the area where the facility is located. Mathematical models of the problem for both the discrete and the continuous cases using the Rectilinear and Euclidean distances are produced. Our aim is to find the optimal number of open facilities, their corresponding locations, and their respective capacities alongside the assignment of the customers to the open facilities in order to minimise the total fixed and transportation costs. For relatively large problems, two solution methods are proposed namely an iterative matheuristic approach and VNS-based matheuristic technique. Dataset from the literature is adapted to assess our proposed methods. To assess the performance of the proposed solution methods, the exact method is first applied to small size instances where optimal solutions can be identified or lower and upper bounds can be recorded. Results obtained by the proposed solution methods are also reported for the larger instances.

  相似文献   

20.
In this paper, we study a solid transportation problem with interval cost using fractional goal programming approach (FGP). In real life applications of the FGP problem with multiple objectives, it is difficult for the decision-maker(s) to determine the goal value of each objective precisely as the goal values are imprecise, vague, or uncertain. Therefore, a fuzzy goal programming model is developed for this purpose. The proposed model presents an application of fuzzy goal programming to the solid transportation problem. Also, we use a special type of non-linear (hyperbolic) membership functions to solve multi-objective transportation problem. It gives an optimal compromise solution. The proposed model is illustrated by using an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号