首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents a new method for synthesis of inorganic/organic hybrid nanoparticles via the in-situ polymerization by the use of the azo-groups bounded silica nanoparticles as a radical initiator and styrene as a model vinyl-monomer. The synthesis and the structure of silica/polystyrene (SiO2/PS), and the polymerization kinetics of the styrene initiated by the azo-groups bounded SiO2 nanoparticles are studied with techniques such as FTIR, XPS, DSC, GPC, and TEM. Results show that the SiO2-g-PS nanoparticles are synthesized successfully, and the resulting hybrid nanoparticles have a core-shell structure with SiO2 in the core and the polystyrene on the outside layer. The percentage of the grafted PS on the SiO2 surface increases with the progress of the polymerization before 6 h, and the largest amount of the grafted PS reaches 33% of the silica nanoparticles.

Consequently, the size of the nanoparticles increases ca. 20 nm upon the polystyrene grafting. The molecular weight of the grafted PS increases with the polymerization, and it has reached a much large value in the first several polymerization hours while it keeps a constant value approximately in the following polymerization process. Meanwhile, the polydispersity index of the grafted PS gradually increases with the progress of the polymerization. These phenomena agree with the theory of the traditional free radical polymerization very well.  相似文献   

2.
Silicon is by far the most important semiconductor material in the microelectronic industry mostly due to the high quality of the Si/SiO2 interface. Consequently, applications requiring chemical functionalization of Si substrates have focused on molecular grafting of SiO2 surfaces. Unfortunately, there are practical problems affecting homogeneity and stability of many organic layers grafted on SiO2, such as silanes and phosphonates, related to polymerization and hydrolysis of Si–O–Si and Si–O–P bonds. These issues have stimulated efforts in grafting functional molecules on oxide-free Si surfaces, mostly with wet chemical processes. This review focuses therefore directly on wet chemical surface functionalization of oxide-free Si surfaces, starting from H-terminated Si surfaces. The main preparation methods of oxide-free H-terminated Si and their stability are first summarized. Functionalization is then classified into indirect substitution of H-termination by functional organic molecules, such as hydrosilylation, and direct substitution by other atoms (e.g. halogens) or small functional groups (e.g. OH, NH2) that can be used for further reaction. An emphasis is placed on a recently discovered method to produce a nanopattern of functional groups on otherwise oxide-free, H-terminated and atomically flat Si(1 1 1) surfaces. Such model surfaces are particularly interesting because they make it possible to derive fundamental knowledge of surface chemical reactions.  相似文献   

3.
The radiation-induced multiple-graft polymerization was studied by an ESR method. When methyl methacrylate vapor was introduced onto preirradiated polyethylene already grafted with styrene, the second step of grafting of methyl methacrylate occurred mainly in the polyethylene portion. The kinetic treatment proved that the termination rate constant kt of methyl methacrylate decreased with the amount of styrene grafted in advance. On the other hand, when styrene vapor was introduced onto polyethylene grafted with methyl methacrylate, only radicals of poly(methyl methacrylate) decreased. In this case, the second step of grafting of styrene occurred in the poly-(methyl methacrylate) portion which covered the whole surface of the polyethylene powder. When monomer vapors were alternately introduced onto preirradiated polyethylene powder, the second step of grafting occurred at the growing chain end of the first monomer.  相似文献   

4.
Nanomechanical properties of end grafted polymer layers were studied by AFM based, colloidal probe compression measurements. Zwitterionic poly(sulfobetaine methacrylate) (PSBMA) brush was grafted from planar Si surface and poly(methyl methacrylate) (PMAA) brush was grown on colloidal probe by surface initiated atom transfer radical polymerization. PMAA brush was further modified with adhesion promoting arginyl-glycyl-aspartic acid (RGD) peptide sequences. Force–distance curves were obtained for systems where the polymer brushes were probed on unmodified surfaces or face to each other. For each systems the grafting density of the polymer brush was determined applying a ‘box’ like polymer brush model based on the theory by de Gennes. ‘Average’ grafting density was calculated in cases when two polymer brushes face each other: RGD functionalized PMAA or PMAA against PSBMA. For our systems the values for the grafting density was between 0.04 and 0.11 nm?2. Furthermore the measured approach force–distance curves were fitted according to the Hertz model and the apparent Young’s modulus was determined for all measurements being in a range of around 250 kPa at physiological conditions.  相似文献   

5.
Polymerization of styrene in the presence of different types of polybutadiene leads to polystyrene (PS) grafted on to rubber and to free PS. It is shown that a difference in molecular weight exists between grafted and free PS; the molecular weight of grafted PS is systematically higher than that of free PS. A comparison to ABS systems has been made by grafting styrene and styrene-acrylonitrile in the same conditions on to polybutadiene. It appears that the difference in molecular weight between grafted and non-grafted polymer is much more pronounced in the case of ABS. These results can be explained by considering a decrease of the termination rate constant (kt) in consequence of the local viscosity variations near the polybutadiene coils and by taking into account its preferential solvation by monomer and initiator.  相似文献   

6.
Living anionic surface‐initiated polymerization on flat gold substrates has been conducted to create uniform homopolymer and diblock copolymer brushes. A 1,1‐diphenylethylene (DPE) self‐assembled monolayer was used as the immobilized precursor initiator. n‐BuLi was used to activate the DPE in tetrahydrofuran at –78 °C to initiate the polymerization of different monomers (styrene, isoprene, ethylene oxide, and methyl methacrylate). Poly(styrene) (PS) and poly(ethylene oxide) (PEO) in particular were first investigated as grafted homopolymers, followed by their copolymers, including poly(isoprene)‐b‐poly(methylmethacrylate) (PI‐b‐PMMA). A combined approach of spectroscopic (Fourier transform infrared spectroscopy, surface plasmon spectroscopy, ellipsometry, X‐ray photoelectron spectroscopy) and microscopic (atomic force microscopy) surface analysis was used to investigate the formation of the polymer brushes in polar solvent media. The chemical nature of the outermost layer of these brushes was studied by water contact angle measurements. The effect of the experimental conditions (solvent, temperature, initiator concentration) on the surface properties of the polymer brushes was also investigated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 769–782, 2006  相似文献   

7.
Abstract

Comb‐like polystyrene grafted silica nanoparticles (c‐PS‐SNs) were prepared by the following steps: (a) methacryloxypropyl silica nanoparticles (MPSNs) were used as macromonomer and free radical copolymerized with 4‐vinyl benzyl chloride (VBC) by a solution polymerization method; (b) the product of (A), poly(4‐vinyl benzyl chloride) grafted silica nanoparticle (PVBC‐SN) was separated and then used as a macroinitiator for the surface‐initiated atom transfer radical polymerization (SI‐ATRP) of styrene catalyzed by the complex of Cu(I)Br and 2,2′‐bipyridyl (bipy) in toluene solutions. The structurally well‐defined polymer chains were grown from the nanoparticle surfaces to yield particles composed of a silica core and a well defined, densely grafted outer comb‐like PS layer. A percentage of grafting (PG%) (the weight ratio of the PS grafted with that of the silica charged) of more than 80% was achieved after a polymerizing time of 5?hr.  相似文献   

8.
Poly(2-oxazoline)s (POx) bottle-brush brushes have excellent biocompatible and lubricious properties, which are promising for the functionalization of surfaces for biomedical devices. Herein, a facile synthesis of POx is reported which is based bottle-brush brushes (BBBs) on solid substrates. Initially, backbone brushes of poly(2-isopropenyl-2-oxazoline) (PIPOx) were fabricated via surface initiated Cu0 plate-mediated controlled radical polymerization (SI-Cu0CRP). Poly(2-methyl-2-oxazoline) (PMeOx) side chains were subsequently grafted from the PIPOx backbone via living cationic ring opening polymerization (LCROP), which result in ≈100 % increase in brush thickness (from 58 to 110 nm). The resultant BBBs shows tunable thickness up to 300 nm and high grafting density (σ) with 0.42 chains nm−2. The synthetic procedure of POx BBBs can be further simplified by using SI-Cu0CRP with POx molecular brush as macromonomer (Mn=536 g mol−1, PDI=1.10), which results in BBBs surface up to 60 nm with well-defined molecular structure. Both procedures are significantly superior to the state-of-art approaches for the synthesis of POx BBBs, which are promising to design bio-functional surfaces.  相似文献   

9.
The graft polymerization of styrene onto preirradiated poly(isobutylene oxide) (PIBO) with methanol and benzene was studied. The order of grafting yield and of the number-average molecular weight of graft chains decrease in the order; undiluted styrene > styrene–methanol (1:1) solution > styrene–benzene (1:1) solution. A kinetic treatment to calculate rate constants from the rate of grafting and the molecular weight of the graft chain was proposed. The propagation rate constant kp was 0.2–0.3 l./mole-sec and the termination rate constant kt was 1.0–16.0 l./mole-sec. The ratio kp/kt in this heterogeneous system was larger than that in homogeneous system by a factor of about 104–105.  相似文献   

10.
《先进技术聚合物》2017,28(11):1357-1365
Hairy nanocellulose (NC) was prepared by in‐situ admicellar polymerization of styrene on NC surface in the presence of cetyltrimethylammonium bromide through a stepwise fashion. It was also tried to achieve three hairy NCs with different polystyrene (PS) brush contents (i.e. 40, 50, and 80%) through altering monomer initial concentration. Then, NC and three hairy NCs were separately added into cellulose acetate (CA) solutions to fabricate membranes via the phase inversion technique. Transmission electron microscope images show that NC and three hairy NCs are spherical‐shaped nanoparticles. Results of Fourier transform infrared spectra provide clear evidence of PS brush being attached to the NC surfaces. Thermal gravimetric analysis confirms that increasing styrene initial concentration leads to enhanced PS content of hairy NCs. Results also elucidate that dispersions of prepared hairy NCs are highly stable even at high loading levels. It was found that incorporation of 1 wt% hairy NC with optimum brush content of 50% within CA membranes results in the increasing membrane water permeability from 7 to 40 l/m2 hr with no change in its selectivity. Indeed, new interactions induced by PS brushes at hairy NC/CA interfaces result in the creation of connected channels at the interfaces which facilitate water transport through the membrane. This study provides insights into the key role that PS brushes play in overcoming the dispersion problems of NC in nonpolar media and offers guidelines to tailor channels within hairy NC/CA membrane for enhanced filtration performance. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Liu  W. L.  Wang  L.  Zhang  L. D.  Xu  W. H.  Chen  S. H.  Wang  X. Q.  Duan  X. L. 《Journal of Sol-Gel Science and Technology》2012,62(3):424-431

Abstract  

The organic–inorganic nanocomposite films were fabricated by grafting polystyrene (PS) onto the vinyltriethoxysilane (VTEOS) modified titanium dioxide nanopowders using free radical polymerization. The composition of the surfaces and the structure for the PS grafted titania (PS-g-TiO2) were examined by infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis, and the rough surface was confirmed by the evaluation of the morphological characteristics of the coating using hybrid particles. The wetting properties of the VTEOS modified titania and PS-g-TiO2 films were investigated, which show the maximum static water contact angles of 160° and 154°, and minimum sliding angles of 3° and 4°, respectively.  相似文献   

12.
The kinetics and mechanism of the photoinitiated polymerization of tetrafunctional and difunctional methacrylic monomers [1,6‐hexanediol dimethacrylate (HDDMA) and 2‐ethylhexyl methacrylate (EHMA)] in a polystyrene (PS) matrix were studied. The aggregation state, vitreous or rubbery, of the monomer/matrix system and the intermolecular strength of attraction in the monomer/matrix and growing macroradical/matrix systems are the principal factors influencing the kinetics and mechanism. For the PS/HDDMA system, where a relatively high intermolecular force of attraction between monomer and matrix and between growing macroradical and matrix occurs, a reaction‐diffusion mechanism takes place at low monomer concentrations (<30–40%) from the beginning of the polymerization. For the PS/EHMA system, which presents low intermolecular attraction between monomer and matrix and between growing macroradical and matrix, the reaction‐diffusion termination is not clear, and a combination of reaction‐diffusion and diffusion‐controlled mechanisms explains better the polymerization for monomer concentrations below 30–40%. For both systems, for which a change from a vitreous state to a rubbery state occurs when the monomer concentration changes from 10 to 20%, the intrinsic reactivity and kp/kt1/2 ratio (where kp is the propagation kinetic constant and kt is the termination kinetic constant) increase as a result of a greater mobility of the monomer in the matrix (a greater kp value). The PS matrix participates in the polymerization process through the formation of benzylic radical, which is bonded to some extent by radical–radical coupling with the growing methacrylic radica, producing grafting on the PS matrix. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2049–2057, 2001  相似文献   

13.
A high-speed thermoresponsive medium was developed by grafting poly(N-isopropylacrylamide-co-butyl methacrylate) (P(NIPAM-co-BMA)) brushes onto gigaporous polystyrene (PS) microspheres via surface-initiated atom transfer radical polymerization (ATRP) technique, which has strong mechanical strength, good chemical stability and high mass transfer rate for biomacromolecules. The gigaporous structure, surface chemical composition, static protein adsorption, and thermoresponsive chromatographic properties of prepared medium (PS–P(NIPAM-co-BMA)) were characterized in detail. Results showed that the PS microspheres were successfully grafted with P(NIPAM-co-BMA) brushes and that the gigaporous structure was robustly maintained. After grafting, the nonspecific adsorption of proteins on PS microspheres was greatly reduced. A column packed with PS–P(NIPAM-co-BMA) exhibited low backpressure and significant thermo-responsibility. By simply changing the column temperature, it was able to separate three model proteins at the mobile phase velocity up to 2167 cm h−1. In conclusion, the thermoresponsive polymer brushes grafted gigaporous PS microspheres prepared by ATRP are very promising in ‘green’ high-speed preparative protein chromatography.  相似文献   

14.
In this paper we describe a graft polymerization/solvent immersion method for generating various patterns of polymer brushes. We used a very-large-scale integration (VLSI) process and oxygen plasma system to generate well-defined patterns of polymerized methyl methacrylate (MMA) on patterned Si(1 0 0) surfaces through atom transfer radical polymerization (ATRP). After immersion of wafers presenting lines of these PMMA brushes in water and tetrahydrofuran, we observed mushroom- and brush-like regimes through grafting densities and surface coverages, respectively, for the PMMA brushes with various pattern resolutions. In the mushroom-like regime, the distance between lines of PMMA brushes was smaller than that of the lines patterned lithographically on the wafer; in the brush-like regime, this distance was approximately the same. This new strategy allows polymer brushes to be prepared through graft polymerization and then have their patterns varied through solvent immersion.  相似文献   

15.
A binary mixture of styrene and maleic anhydride has been graft copolymerized onto cellulose extracted from Pinus roxburghii needles. The reaction was initiated with gamma rays in air by the simultaneous irradiation method. Graft copolymerization was studied under optimum conditions of total dose of radiation, amount of water, and molar concentration previously worked out for grafting styrene onto cellulose. Percentage of total conversion (Pg), grafting efficiency (%), percentage of grafting (Pg), and rates of polymerization (Rp), grafting (Rg), and homopolymerization (Rh) have been determined as a function of maleic anhydride concentration. The high degree of kinetic regularity and the linear dependence of the rate of polymerization on maleic anhydride concentration, along with the low and nearly constant rate of homopolymerization suggest that the monomers first form a complexomer which then polymerizes to form grafted chains with an alternating sequence. Grafting parameters and reaction rates achieve maximum values when the molar ratio of styrene to maleic anhydride is 1 : 1. Further evidence for the alternating monomer sequence is obtained from quantitatively evaluating the composition of the grafted chains from the FT‐IR spectra, in which the ratio of anhydride absorbance to aromatic (CC) absorbance for the stretching bands assigned to the grafted monomers remained constant and independent of the feed ratio of maleic anhydride to styrene. Thermal behaviour of the graft copolymers revealed that all graft copolymers exhibit single stage decomposition with characteristic transitions at 161–165°C and 290–300°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1763–1769, 1999  相似文献   

16.
Lithium-metallated styrene–p-benzylstyrene copolymer was reacted with chlorine-terminated polystyrene as a crosslinker polymer in tetrahydrofuran (THF) at 25°C. The rate constant was estimated from the changes in the concentration of metallated polymer by using photometrical measurements. The various reaction conditions were chosen and it became clear that the rate constants of grafting (k1) and intramolecular crosslinkings (k2intra) were gotten separately at the first stage. As a result, k2intra showed larger values than k1 and decreased with increasing degree of polymerization of crosslinker polymers.  相似文献   

17.
A diblock copolymer, poly(methyl methacrylate)-b-polystyrene (PMMA-b-PS), was grafted onto the surface of nano-titania (nano-TiO2) successfully via reversible addition-fragmentation chain transfer (RAFT) polymerization. The surface of TiO2 nanoparticles was modified initially by attaching dithioester groups to the surface using silane coupling agent 3-(chloropropyl)triethoxy silane and sodium ethyl xanthate. The polymerization of methyl methacrylate and styrene were then initiated and propagated on the TiO2 surface by RAFT polymerization. The resulting composite nanoparticles were characterized by means of XPS, FT-IR, 1H NMR and TGA. The results confirmed the successful grafting of poly(methyl methacrylate) (PMMA) and diblock copolymer chains onto the surface of TiO2. The amount of PMMA grafted onto the TiO2 surface increased with the polymerization time. Moreover, the kinetic studies revealed that the ln([M]0/[M]), where [M]0 is the initial and [M] is the time dependent monomer concentrations, increased linearly with the polymerization time, indicating the living characteristics of the RAFT polymerization.  相似文献   

18.
The graft copolymerization of styrene onto chlorinated butyl rubber (Cl-IIR) with stannic chloride as cationic catalyst was studied in cyclohexane, and the rate of polymerization, per cent grafting and grafting efficiency were obtained. Polymerization was carried out in a sealed tube. The product was precipitated in methanol and dried. The increase in weight of Cl-IIR used was regarded as styrene conversion, and the increase in weight after extraction by boiling acetone as the weight of grafted styrene. Grafting was confirmed by fractional dissolution and infrared spectra. The rate of polymerization of styrene was proportional to concentrations of styrene, Cl-IIR and SnCl4. The per cent grafting increased with styrene and SnCl4 concentration, but was constant with Cl-IIR concentration. It also increased with time and with halogen content in the polymer. The addition of a polar solvent such as nitrobenzene greatly promoted the grafting reaction and the per cent grafting was 200%.  相似文献   

19.
The nitroxide‐mediated radical polymerization of styrene was carried out on the surfaces of multiwalled carbon nanotubes (MWNTs) initiated by an MWNT‐supported initiator multiwalled carbon nanotube–2″,2″,6″,6″‐tetramethylpiperidinyloxy (MWNT–Tempo). The content of polystyrene grafted from the surface was controlled by changes in the polymerization conditions, such as the reaction times or the ratios of monomers to initiators. The obtained polystyrene‐grafted multiwalled carbon nanotubes (MWNT–PSs) were further used to initiate the polymerization of 4‐vinylpyridine to get polystyrene‐b‐poly(4‐vinylpyridine)‐grafted multiwalled carbon nanotubes (MWNT–PS‐b‐P4VPs). In contrast to unmodified MWNTs, MWNT–PSs had relatively good dispersibility in various organic solvents, such as tetrahydrofuran, CHCL3, and o‐dichlorobenzene. The structures and properties of MWNT–PSs and MWNT–PS‐b‐P4VPs were characterized and studied with several methods, including thermogravimetric analysis, Fourier transform infrared, ultraviolet–visible, and transmission electron microscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4656–4667, 2006  相似文献   

20.
PS grafted silica nanoparticles have been prepared by a tandem process that simultaneously employs RAFT polymerization and click chemistry. In a single pot procedure, azide‐modified silica, an alkyne functionalized RAFT agent and styrene are combined to produce the desired product. As deduced by thermal gravimetric and elemental analysis, the grafting density of PS on the silica in the tandem process is intermediate between analogous “grafting to” and “grafting from” techniques for preparing PS brushes on silica. Relative rates of RAFT polymerization and click reaction can be altered to control grafting density.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号