首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compound, C9H19N3O·C4H7NO2, displays strong intramolecular O—H⃛N [O⃛N 2.6743 (13) Å] and N—H⃛N [N⃛N 2.6791 (15) Å] hydrogen bonds, and strong intermolecular O—H⃛N [O⃛N 2.7949 (15) Å] and N—H⃛O [N⃛O 3.0924 (16) Å] hydrogen bonds. This creates chains of per­hydro­pyrimidine mol­ecules, linked by hydrogen bonds. Each chain is linked to a partner chain, through hydrogen bonds to two butane-2,3-dione monooxime mol­ecules, in a structure reminiscent of a ladder.  相似文献   

2.
The title compound, C10H13N5O6, exhibits a highly polarized molecular–electronic structure and the conformation is influenced by two intramolecular N—H⃛O hydrogen bonds. The mol­ecules are linked into a single framework by hydrogen bonds of types O—H⃛O [O—H = 1.22, H⃛O = 1.38, O⃛O = 2.558 (6) Å and O—H⃛O = 160°], N—H⃛O [H⃛O = 2.26, N⃛O = 2.866 (6) Å and N—H⃛O = 126°] and O—H⃛N [O—H = 1.26, H⃛N = 1.56, O⃛N = 2.811 (6) Å and O—H⃛N = 170°]. The substructure generated by the O—H⃛O and N—H⃛O hydrogen bonds takes the form of a double helix.  相似文献   

3.
In the title compound, [Ni(CH5N3S)2(H2O)2](C4H3O4)2·2H2O, the Ni atom lies on a center of symmetry and is coordinated by N and S atoms from two thio­semicarbazide ligands and the O atoms of two water mol­ecules in a distorted octahedral geometry. In the asymmetric unit, the three components are linked together by one O—H⋯O and two N—H⋯O hydrogen bonds. The packing is built from molecular ribbons parallel to the b direction, stabilized by intramolecular hydrogen bonds, and by one N—H⋯S and two N—H⋯O intermolecular hydrogen bonds. The ribbons are further connected into columns by N—H⋯O interactions and then into a three‐dimensional network by three O—H⋯O hydrogen bonds.  相似文献   

4.
In the title compound, [Zn(CH3COO)2(C4H8N2S)2]·H2O, the Zn atom is tetrahedrally coordinated in the ZnO2S2 form. N—H?O and O—H?O intramolecular and intermolecular hydrogen bonds are formed by the four N atoms and the water mol­ecule. N—H?O intermolecular hydrogen bonds and C—H?S and C—H?O intermolecular interactions interconnect columns formed by the mol­ecules into layers. Adjacent layers are then linked by other N—H?O and O—H?O intermolecular hydrogen bonds to form a three‐dimensional framework throughout the structure. The orientations of the acetate planes are such that the Zn atom lies within them.  相似文献   

5.
The title compound, C21H26FN3O7, is assembled by N—H...O and O—H...O hydrogen bonds into well‐separated two‐dimensional layers of about 15 Å thickness. The crescent conformation of the molecules is stabilized by weak intramolecular C—H...O and C—H...F hydrogen bonds. The uridine moiety adopts an anti conformation. The ribofuranose ring exists in an envelope conformation. All the endocyclic uracil bonds are shorter than normal single C—N and C—C bonds, and five of them have comparable lengths, which implies a considerable degree of delocalization of the electron density within this ring.  相似文献   

6.
In the title compounds, C6H8N3O2+·NO3? and C5­H6­N3­O2+·­CH3SO3?, respectively, the cations are almost planar; the twist of the nitr­amino group about the C—N and N—N bonds does not exceed 10°. The deviations from coplanarity are accounted for by intermolecular N—H?O interactions. The coplanarity of the NHNO2 group and the phenyl ring leads to the deformation of the nitr­amino group. The C—N—N angle and one C—C—N angle at the junction of the phenyl ring and the nitr­amino group are increased from 120° by ca 6°, whereas the other junction C—C—N angle is decreased by ca 5°. Within the nitro group, the O—N—O angle is increased by ca 5° and one O—N—N angle is decreased by ca 5°, whereas the other O—N—N angle remains almost unchanged. The cations are connected to the anions by relatively strong N—H?O hydrogen bonds [shortest H?O separations 1.77 (2)–1.81 (3) Å] and much weaker C—H?O hydrogen bonds [H?O separations 2.30 (2)–2.63 (3) Å].  相似文献   

7.
In the crystal structure of the title compound, [Zn(C4H13N3)2]2[Fe(CN)6]·4H2O, the asymmetric unit is formed by a [Zn(dien)2]2+ cation (dien = diethyl­enetri­amine, NH2CH2CH2NHCH2CH2NH2), water mol­ecules and half of the [Fe(CN)6]4? anion which is related by inversion symmetry through the Fe atom. The geometry around the Zn and Fe atoms is distorted octahedral and octahedral, respectively. Intramolecular O—H?O hydrogen bonds involving the water mol­ecules, and intermolecular O—H?N hydrogen bonds involving the water mol­ecules and the anions, result in an infinite chain. Intramolecular O—H?O and N—H?N, and intermolecular O—H?N, N—H?O and N—H?N hydrogen bonds form a three‐dimensional framework.  相似文献   

8.
In the title compound, C11H12BrN5O2, the rings in the pterin moiety are planar. The carbonyl O atom is in a synperiplanar conformation, while the C—N—C(=O)—C linkage is antiperiplanar. N—H?N and N—H?O intermolecular hydrogen bonds transform the mol­ecules into infinite chains.  相似文献   

9.
In the title compound, NH4+·C7H8N5O4·H2O, the independent components are linked into bilayers by an extensive series of two‐centre N—H⃛O hydrogen bonds [H⃛O = 1.85–1.96 Å, N⃛O = 2.776 (2)–2.840 (2) Å and N—H⃛O = 149–172°], and by asymmetric three‐centre N—H⃛(O)2, O—H⃛(N,O) and O—H⃛(O)2 hydrogen bonds.  相似文献   

10.
In the title compound, C4H6N4S·0.5H2O, there are two independent pyrimidinethione units, both of which lie across mirror planes in the space group Cmca. Hence, the H atoms bonded to the ring N atoms in each molecule are disordered over two symmetry‐related sites, each having an occupancy of 0.5. The water molecule lies across a twofold rotation axis parallel to [010]. The molecular components of (I) are linked by seven independent hydrogen bonds, of N—H...N, N—H...S, N—H...O and O—H...S types. A combination of disordered N—H...N hydrogen bonds and ordered N—H...S hydrogen bonds links the pyrimidinethione units into a continuous tubular structure. The water molecule acts as both a double donor of hydrogen bonds and a double acceptor, forming hydrogen bonds with components of four distinct pyrimidinethione tubes, thus linking these tubes into a three‐dimensional structure.  相似文献   

11.
In the title compound, C4H12N22+·2C8H7O3?·2CH4O, the cations lie across centres of inversion and are disordered over two orientations with equal occupancy; there are equal numbers of (R)‐ and (S)‐mandelate anions present (mandelate is α‐hydroxy­benzene­acetate). The anions and the neutral water mol­ecules are linked by O—H?O hydrogen bonds [O?O 2.658 (3) and 2.682 (3) Å, and O—H?O 176 and 166°] into deeply folded zigzag chains. Each orientation of the cation forms two symmetry‐related two‐centre N—H?O hydrogen bonds [N?O 2.588 (4) and 2.678 (4) Å, and N—H?O 177 and 171°] and two asymmetric, but planar, three‐centre N—H?(O)2 hydrogen bonds [N?O 2.686 (4)–3.137 (4) Å and N—H?O 137–147°], and by means of these the cations link the anion/water chains into bilayers.  相似文献   

12.
In order to investigate the relative stability of N—H...O and N—H...S hydrogen bonds, we cocrystallized the antithyroid drug 6‐propyl‐2‐thiouracil with two complementary heterocycles. In the cocrystal pyrimidin‐2‐amine–6‐propyl‐2‐thiouracil (1/2), C4H5N3·2C7H10N2OS, (I), the `base pair' is connected by one N—H...S and one N—H...N hydrogen bond. Homodimers of 6‐propyl‐2‐thiouracil linked by two N—H...S hydrogen bonds are observed in the cocrystal N‐(6‐acetamidopyridin‐2‐yl)acetamide–6‐propyl‐2‐thiouracil (1/2), C9H11N3O2·2C7H10N2OS, (II). The crystal structure of 6‐propyl‐2‐thiouracil itself, C7H10N2OS, (III), is stabilized by pairwise N—H...O and N—H...S hydrogen bonds. In all three structures, N—H...S hydrogen bonds occur only within R22(8) patterns, whereas N—H...O hydrogen bonds tend to connect the homo‐ and heterodimers into extended networks. In agreement with related structures, the hydrogen‐bonding capability of C=O and C=S groups seems to be comparable.  相似文献   

13.
Two polymorphs of bis(2‐carbamoylguanidinium) fluorophosphonate dihydrate, 2C2H7N4O+·FO3P2−·2H2O, are presented. Polymorph (I), crystallizing in the space group Pnma, is slightly less densely packed than polymorph (II), which crystallizes in Pbca. In (I), the fluorophosphonate anion is situated on a crystallographic mirror plane and the O atom of the water molecule is disordered over two positions, in contrast with its H atoms. The hydrogen‐bond patterns in both polymorphs share similar features. There are O—H...O and N—H...O hydrogen bonds in both structures. The water molecules donate their H atoms to the O atoms of the fluorophosphonates exclusively. The water molecules and the fluorophosphonates participate in the formation of R44(10) graph‐set motifs. These motifs extend along the a axis in each structure. The water molecules are also acceptors of either one [in (I) and (II)] or two [in (II)] N—H...O hydrogen bonds. The water molecules are significant building elements in the formation of a three‐dimensional hydrogen‐bond network in both structures. Despite these similarities, there are substantial differences between the hydrogen‐bond networks of (I) and (II). The N—H...O and O—H...O hydrogen bonds in (I) are stronger and weaker, respectively, than those in (II). Moreover, in (I), the shortest N—H...O hydrogen bonds are shorter than the shortest O—H...O hydrogen bonds, which is an unusual feature. The properties of the hydrogen‐bond network in (II) can be related to an unusually long P—O bond length for an unhydrogenated fluorophosphonate anion that is present in this structure. In both structures, the N—H...F interactions are far weaker than the N—H...O hydrogen bonds. It follows from the structure analysis that (II) seems to be thermodynamically more stable than (I).  相似文献   

14.
The title compound, [Ni2(C8H4O4)(C10H24N4)2(H2O)2](ClO4)2, contains two independent octahedral NiII centres with trans‐NiN4O2 chromophores. The bridging benzene­dicarboxyl­ate ligand is bonded to the two Ni atoms, each via one O atom of each carboxyl­ate, while the other O atom participates in an intramolecular N—H?O hydrogen bond, forming an S(6) motif. The cations are linked to the perchlorate anions via O—H?O and N—H?O hydrogen bonds [O?O 2.904 (6) and 2.898 (6) Å; O—H?O 158 (6) and 165 (6)°; N?O 3.175 (7) and 3.116 (7) Å; N—H?O 168 and 166°] to form molecular ladders. These ladders are linked by further O—H?O and N—H?O hydrogen bonds [O?O 2.717 (6) and 2.730 (5) Å; O—H?O 170 (4) and 163 (6)°; N?O 3.373 (7) and 3.253 (7) Å; N—H?O 163 and 167°] to form a continuous three‐dimensional framework. The perchlorate anions both participate in three hydrogen bonds, and both are thus fully ordered.  相似文献   

15.
Molecules of phthal­imide [1H‐iso­indole‐1,3(2H)‐dione], C8H5NO2, are linked by N—H?O hydrogen bonds [H?O 2.02 Å, N?O 2.8781 (16) Å and N—H?O 167°] and by C—H?O hydrogen bonds [H?O 2.54 and 2.56 Å, C?O 3.3874 (18) and 3.4628 (19) Å, and C—H?O 149 and 159°] into molecular ribbons, which are pierced by three different ring motifs; there are two centrosymmetric R(8) rings, each containing a single hydrogen bond, N—H?O in one case and C—H?O in the other, and R(9) rings containing all three hydrogen bonds.  相似文献   

16.
The title compound is a salt, [C12H32N6]2+·2[HOC6H4C6H4O]?. The centrosymmetric cation contains two intramolecular N—H?N hydrogen bonds with an N?N distance of 2.8290 (13) Å, and the pendent amino groups are in axial sites; the anion contains an intramolecular O—H?O hydrogen bond with an O?O distance of 2.4656 (11) Å. The ions are linked into continuous chains by means of four types of N—H?O hydrogen bonds with N?O distances ranging from 2.7238 (12) Å to 3.3091 (13) Å, associated with N—H?O angles in the range 148–160°.  相似文献   

17.
Molecules of 1,3‐diamino‐4‐nitrobenzene, C6H7N3O2, are linked by N—H?O hydrogen bonds [N?O 2.964 (2) and 3.021 (2) Å; N—H?O 155 and 149°] into (4,4) nets. In 3,5‐di­nitro­aniline, C6H5N3O4, where Z′ = 2, the mol­ecules are linked by three N—H?O hydrogen bonds [N?O 3.344 (2)–3.433 (2) Å and N—H?O 150–167°] into deeply puckered nets, each of which is interwoven with its two immediate neighbours.  相似文献   

18.
The tris­(1H‐benzimidazol‐2‐yl­meth­yl)­amine (ntb) mol­ecule crystallizes in different solvent systems, resulting in two kinds of adduct, namely the monohydrate, C24H21N7·H2O or ntb·H2O, (I), and the acetonitrile–methanol–water (1/0.5/1.5) solvate, C24H21N7·C2H3N·0.5CH4O·1.5H2O or ntb·1.5H2O·0.5MeOH·MeCN, (II). In both cases, ntb adopts a tripodal mode to form hydrogen bonds with a solvent water mol­ecule via two N—H⋯O and one O—H⋯N hydrogen bond. In (I), the ntb·H2O adduct is further assembled into a two‐dimensional network by N—H⋯N and O—H⋯N hydrogen bonds, while in (II), a double‐stranded one‐dimensional chain structure is assembled via N—H⋯O and O—H⋯O hydrogen bonds, with the acetonitrile mol­ecules located inside the cavities of the chain structure.  相似文献   

19.
The title compound, N‐hydroxy­propan­amide, C3H7NO2, crystallizes with Z′ = 3 in P21/c. The mol­ecules are linked by three N—H?O hydrogen bonds [N?O 2.8012 (16) to 2.8958 (15) Å; N—H?O 163 to 168°] and by three O—H?O hydrogen bonds [O?O 2.6589 (15) to 2.6775 (17) Å; O—H?O 165 to 177°] into a single three‐dimensional framework.  相似文献   

20.
The molecules of 5‐amino‐1‐(4‐methoxybenzoyl)‐3‐methylpyrazole, C12H13N3O2, (I), and 5‐amino‐3‐methyl‐1‐(2‐nitrobenzoyl)pyrazole, C11H10N4O3, (II), both contain intramolecular N—H...O hydrogen bonds. The molecules of (I) are linked into a chain of rings by a combination of N—H...N and N—H...π(arene) hydrogen bonds, while those of (II) are linked into a three‐dimensional framework structure by N—H...N and C—H...O hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号