首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of [(Z)‐2‐methyl­but‐1‐en‐1‐yl]­[4‐(tri­fluoro­methyl)­phenyl]­iodo­nium tri­fluoro­methane­sulfonate, C12H13F3I+·CF3O3S?, (I), (3,5‐di­chloro­phenyl)­[(Z)‐2‐methyl­but‐1‐en‐1‐yl]­iodo­nium tri­fluoro­methane­sulfonate, C11H12­Cl2I+·CF3O3S?, (II), and bis{[3,5‐bis­(tri­fluoro­methyl)­phenyl][(Z)‐2‐methyl­but‐1‐en‐1‐yl]­iodo­nium} bis­(tri­fluoro­methane­sulfonate) di­chloro­methane solvate, 2C13H12F6I+·­2CF3­O3S?·CH2Cl2, (III), are described. Neither simple acyclic β,β‐di­alkyl‐substituted alkenyl­(aryl)­idonium salts nor a series containing electron‐deficient aryl rings have been described prior to this work. Compounds (I)–(III) were found to have distorted square‐planar geometries, with each I atom interacting with two tri­fluoro­methane­sulfonate counter‐ions.  相似文献   

2.
The title compound, {[Ag2(C4H4N2)3](CF3SO3)2·2H2O}n, is a polymeric pyrazine–silver(I) complex. Each AgI ion is three‐coordinated by N atoms of three different pyrazine ligands, forming a T‐shaped coordination configuration. In the crystal structure, uncoordinated water mol­ecules are linked to tri­fluoro­methane­sulfonate anions through intermolecular O—H⋯O hydrogen bonds. There are weaker Ag⋯O interactions involving the water and sulfonate O atoms.  相似文献   

3.
The organic ligands 4‐methyl‐1H‐imidazole and 2‐ethyl‐4‐methyl‐1H‐imidazole react with Cu(CF3SO3)2·6H2O to give tetrakis(5‐methyl‐1H‐imidazole‐κN3)­cop­per(II) bis­(tri­fluoro­methane­sulfonate), [Cu(C4H6N2)4](CF3SO3)2, and aqua­tetrakis(2‐ethyl‐5‐methyl‐1H‐imidazole‐κN3)copper(II) bis(tri­ fluoro­methane­sulfonate), [Cu(C6H10N2)4(H2O)](CF3SO3)2. In the former, the Cu atom has an elongated octahedral coordination environment, with four imidazole rings in equatorial positions and two tri­fluoro­methane­sulfonate ions in axial positions. This conformation is similar to those in the analogous complexes tetrakis­(imidazole)­cop­per(II) tri­fluoro­methane­sulfonate and tetrakis(2‐methyl‐1H‐imidazole)­cop­per(II) tri­fluoro­methane­sulfonate. In the second of the title compounds, the ethyl groups block the central Cu atom, and a square‐pyramidal coordination environment is formed around the Cu atom, with the substituted imidazole rings in the basal positions and a water mol­ecule in the axial position.  相似文献   

4.
In 2‐tri­fluoro­methyl‐4‐nitro­aniline, C7H5F3N2O2, (I), the mol­ecules lie across a mirror plane in space group Pnma. The mol­ecules are linked by paired N—H?O hydrogen bonds to form a C(8)[R(6)] chain of rings, pairs of which are linked into a molecular ladder by a single C—H?O hydrogen bond. The isomeric 3‐tri­fluoro­methyl‐4‐nitro­aniline, (II), has Z′ = 2 in space group P21/c. Each mol­ecule is linked to four others by N—H?O hydrogen bonds to form sheets built from alternating R(12) and R(32) rings.  相似文献   

5.
Each of the three title compounds, namely 6,6′‐methyl­ene­bis­(2‐methyl‐4H‐3,1‐benz­oxazin‐4‐one), C19H14N2O4, 6,6′‐methyl­ene­bis­(2‐tri­fluoro­methyl‐4H‐3,1‐benz­oxazin‐4‐one), C19H8F3N2O4, and 6,6′‐bi­(2‐tri­fluoro­methyl‐4H‐3,1‐benz­oxazin‐4‐one), C18H6F6N2O4, contains two planar benz­ox­azin­one fragments. In the first two compounds, these planes are virtually perpendicular to each other, while the third compound is planar overall. The electronic effects of the substituent groups on the oxazine moiety result in distortion of the bond angles at the C atoms of the C=O and C=N bonds, and in redistribution of electronic density in the oxazine rings. The latter leads to different bond lengths within this ring in the three mol­ecules. All the mol­ecules form stacks in their crystals with distances of 3.2–3.6 Å between adjacent mol­ecules in a stack.  相似文献   

6.
The crystals of a new melaminium salt, 2,4,6‐tri­amino‐1,3,5‐triazine‐1,3‐diium bis(4‐hydroxy­benzene­sulfonate) dihydrate, C3H8N62+·2C6H5O4S?·2H2O, are built up from doubly proton­ated melaminium(2+) residues, dissociated p‐phenol­sulfonate anions and water mol­ecules. The doubly protonated melaminium dication lies on a twofold axis. The hydroxyl group of the p‐hydroxybenzenesulfonate residue is roughly coplanar with the phenyl ring [dihedral angle 13 (2)°]. A combination of ionic and donor–acceptor hydrogen‐bond interactions link the melaminium and p‐hydroxybenzenesulfonate residues and the water mol­ecules to form a three‐dimensional network.  相似文献   

7.
Three chiral electron‐deficient phosphine ligands, [(4R,15R)‐,3‐bis­(tri­fluoro­methane­sulfonyl)­per­hydro‐1,3,2‐benzodiazaphosphol‐2‐yl]­diethyl­amine, C12H20F6N3O4PS2, (IIIa), [(4R,5R)‐1,3‐bis­(tri­fluoro­methane­sulfonyl)­per­hydro‐1,3,2‐benzodi­aza­phosphol‐2‐yl]­di­methyl­amine, C10H16F6N3O4PS2, (IIIb), and bis­[(4R,5R)‐1,3‐bis­(tri­fluoro­methane­sulfonyl)­per­hydro‐1,3,2‐benzodi­aza­phosphol‐2‐yl]­methyl­amine, (IV), as the chloroform solvate, C17H23F12N5O8P2S4·0.98CHCl3, have been prepared from (1R,2R)‐N,N′‐bis­(tri­fluoro­methane­sulfonyl)‐1,2‐cyclo­hexane­di­amine and diethyl phosphor­amido­us dichloride, dimethyl phosphoramidous dichloride or methyl imidodi­phosphorus tetrachloride. The π‐acceptor abilities of these new types of ligands have been evaluated by X‐ray determination of the P—N bond lengths; it has been found that the most promising ligand is the bis­(phosphine) (IV).  相似文献   

8.
Two new iron–oxo clusters, viz. di‐μ‐tri­fluoro­acetato‐μ‐oxo‐bis­[(2,2′‐bi­pyridine‐κ2N,N′)(tri­fluoro­acetato‐κO)­iron(III)], [Fe2O(CF3CO2)4(C10H8N2)2], and bis(2,2′‐bi­pyridine)­di‐μ3‐oxo‐hexa‐μ‐tri­fluoro­acetato‐bis­(tri­fluoro­acetato)­tetrairon(III) tri­fluoro­acetic acid solvate, [Fe4O2(CF3CO2)8(C10H8N2)2]·CF3CO2H, contain dinuclear and tetranuclear FeIII cores, respectively. The FeIII atoms are in distorted octahedral environments in both compounds and are linked by oxide and tri­fluoro­acetate ions. The tri­fluoro­acetate ions are either bridging (bidentate) or coordinated to the FeIII atoms via one O atom only. The fluorinated peripheries enhance the solubility of these compounds. Formal charges for all the Fe centers were assigned by summing valences of the chemical bonds to the FeIII atom.  相似文献   

9.
In the title hydrated adduct, 1,4,10,13‐tetraoxa‐7,16‐diazo­nia­cyclo­octa­decane bis(4‐amino­benzene­sulfonate) dihydrate, C12H28N2O42+·2C6H6NO3S·2H2O, formed between 7,16‐di­aza‐18‐crown‐6 and the dihydrate of 4‐amino­benzene­sulfonic acid, the macrocyclic cations lie across centres of inversion in the orthorhombic space group Pbca. The anions alone form zigzag chains, and the cations and anions together form sheets that are linked via water mol­ecules and anions to form a three‐dimensional grid.  相似文献   

10.
The structures of N‐fluoro­pyridinium tri­fluoro­methane­sulfon­ate, C5H5FN+·CF3O3S, (I), and 1‐fluoro‐2,4,6‐tri­methoxy‐1,3,5‐triazinium hexa­fluoro­antimonate, (C6H9FN3O3)[SbF6], (II), are presented. The N—F bond lengths in (I), a well known electrophilic fluorinating agent, and its novel analogue, (II), are 1.357 (4) and 1.354 (4) Å, respectively.  相似文献   

11.
In tris(4‐hydroxy­phenyl)­methane (or 4,4′,4′′‐methane­triyl­tri­phenol), C19H16O3, mol­ecules are connected by O—H⃛O hydrogen bonds [O⃛O = 2.662 (2) and 2.648 (2) Å] into two‐dimensional square networks that are twofold interpenetrated. In tris(4‐hydroxy­phenyl)­methane–4,4′‐bi­pyridine (1/1), C19H16O3·C10H8N2, trisphenol mol­ecules form rectangular networks via O—H⃛O [O⃛O = 2.694 (3) Å] and C—H⃛O [C⃛O = 3.384 (3) Å] hydrogen bonds. Bi­pyridine mol­ecules hydrogen bonded to phenol moieties [O⃛N = 2.622 (3) and 2.764 (3) Å] fill the voids to complete the structure.  相似文献   

12.
In the title adduct, 1,3,5,7‐tetra­aza­tri­cyclo[3.3.1.13,7]dec­ane–4‐nitro­benzene‐1,2‐diol–water (1/2/1), C6H12N4·2C6H5NO4·H2O, the hexa­methyl­ene­tetra­mine mol­ecule acts as an acceptor of intermolecular O—H?N hydrogen‐bonding interactions from the water mol­ecule and the hydroxy groups of one of the two symmetry‐independent 4‐nitro­catechol mol­ecules. The structure is built from molecular layers which are stabilized by three intermolecular O—H?O, two intermolecular O—H?N and four intermolecular C—H?O hydrogen bonds. The layers are further interconnected by one additional intermolecular O—H?N and two intermolecular C—H?O hydrogen bonds.  相似文献   

13.
In the title compound, diaqua­bis(1,4‐di‐4‐pyrid­yl‐2,3‐diaza‐1,3‐butadiene)dimethanolzinc(II) bis­(perchlorate) 1,4‐di‐4‐pyrid­yl‐2,3‐diaza‐1,3‐butadiene methanol 1.72‐solvate 1.28‐hydrate, [Zn(C12H10N4)2(CH4O)2(H2O)2](ClO4)2·C12H10N4·1.72CH4O·1.28H2O, determined at ca 110 K, the Zn cation and the extended dipyridyl ligand both lie across inversion centres in space group P. The structure consists of a network arrangement of the constituent species stabilized by a combination of coordination, hydrogen bonding and π–π forces. Uncoordinated methanol and water solvent mol­ecules occupy the otherwise void spaces within and between the networks.  相似文献   

14.
The reaction of the diazine ligand 3,5‐bis(2‐pyridinyl)‐1,3,4‐oxa­diazole (pod, C12H8N4O), with Cu(CF3SO3)2 or Ni(ClO4)2 afforded the title complexes di­aqua­bis­[3,5‐bis(2‐pyridinyl)‐1,3,4‐oxa­diazole‐N2,N3]copper(II) bis­(tri­fluoro­methane­sul­fon­ate), [Cu(pod)2(H2O)2](CF3SO3)2, and di­aqua­bis­[3,5‐bis(2‐pyridinyl)‐1,3,4‐oxa­diazo­le‐N2,N3]­nickel(II) diperchlorate, [Ni(pod)2(H2O)2](ClO4)2. Both complexes present a crystallographically centrosymmetric mononuclear cation structure which consists of a six‐coordinated CuII or NiII ion with two pod mol­ecules acting as bidentate ligands and two axially coordinated water mol­ecules.  相似文献   

15.
The title compound, [Ag(CF3O3S)(C6H6)], has been synthesized and characterized by low‐temperature single‐crystal X‐ray diffraction. The complex is polymeric, with a network of tri­fluoro­methane­sulfonate anions bridging the silver cations. The terminal planar benzene ligand is asymmetrically η2‐coordinated to the Ag.  相似文献   

16.
(1,4,7‐Tri­thia­cyclo­nonane)silver tri­fluoro­methane­sulfonate crystallizes in a tetrameric form from nitro­methane, to give the title compound, [Ag4(C6H12S3)4](CF3SO3)4·2CH3NO2. The complex cation consists of four [AgL]+ units (L is 1,4,7‐tri­thia­cyclo­nonane), with four Ag—S—Ag bridges forming a cyclic tetramer. The almost planar Ag4S4 ring takes an octagonal form.  相似文献   

17.
Moxifloxacin, a novel fluoro­quinolone with a broad spectrum of anti­bacterial activity, is available as the solvated monohydro­chloride salt 7‐[(S,S)‐2‐aza‐8‐azoniabicyclo­[4.3.0]non‐8‐yl]‐1‐cyclo­propyl‐6‐fluoro‐8‐meth­oxy‐4‐oxo‐1,4‐dihydroquinoline‐3‐carboxylic acid chloride–water–methanol (2/1/1), C21H25FN3O4+·Cl·0.5H2O·0.5CH3OH. The asymmetric unit contains two cations, two chloride ions, a mol­ecule of water and one methanol mol­ecule. The two cations adopt conformations that differ by an almost 180° rotation with respect to the piperidinopyrrolidine side chain. The cyclo­propyl ring and the meth­oxy group are not coplanar with the quinoline ring system. The carboxylic acid function, the protonated terminal piperidyl N atom, the water mol­ecule, the chloride ion and the methanol mol­ecule participate in O—H⋯O, O—H⋯Cl, N—H⋯O and N—H⋯Cl hydrogen bonding, linking the mol­ecules into extended two‐dimensional networks.  相似文献   

18.
The title compound, C9H8FN5·C3H7NO, contains two independent complexes in the asymmetric unit, each consisting of one 3,5‐di­amino‐6‐(2‐fluoro­phenyl)‐1,2,4‐triazine mol­ecule and one di­methyl­form­amide solvent mol­ecule. One triazine mol­ecule is disordered over two conformations within the crystal, the occupancies being 62 (1) and 38 (1)%. The phenyl ring of this mol­ecule resolves into two conformations rotated by almost 180° about the bridging bond between the two rings, while the triazine rings approximately superimpose on each other. The triazine mol­ecules of the asymmetric unit differ in the dihedral angles between their respective phenyl and triazine ring planes, these being 57.6 (2)° for the fully occupied, and 76.9 (6) and 106.8 (8)° for the partially occupied mol­ecules. An extensive network of hydrogen bonds maintains the crystal structure.  相似文献   

19.
The title complex, 2CH4N2S·C4H6O4, is a host–guest system. The asymmetric unit consists of one complete thio­urea mol­ecule and one‐half of a dimethyl oxalate mol­ecule lying on an inversion centre. The host thio­urea mol­ecules are connected to form zigzag chains by N—H⋯S hydrogen bonds. The guest dimethyl oxalate mol­ecules provide O‐atom acceptors for N—H⋯O hydrogen bonds, thus inter­connecting the chains of thio­urea mol­ecules to form completely connected sheets. The reduction in temperature from 300 to 100 K leaves the structure unchanged and still isostructural with that previously determined for the analogous thio­urea–diethyl oxalate (2/1) complex. It does, however, induce closer packing of the mol­ecules, general shrinkage of the unit cell and shortening of the hydrogen bonds, these last two to the extent of 1–2%.  相似文献   

20.
The solid‐state structure of the first reported homoleptic copper di‐2‐pyridyl­phosphinate complex shows an extremely large `z‐out' tetragonal distortion, with an axial Cu⋯O distance of 2.430 (2) Å. The title complex, [Cu(C10H8N2O2P)2]·2CH2Cl2 or Cu[py2P(O)O]2·2CH2Cl2, comprises two di‐2‐pyridyl­phosphinate ligands coordinated to the central copper(II) ion, which sits on an inversion center. The pyridyl rings of one ligand are trans to the pyridyl rings of their symmetry‐related counterpart. The two trans py–Cu–py moieties are coplanar, as required by the inversion symmetry. A disordered dichloromethane solvent mol­ecule is cocrystallized in the asymmetric unit cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号