首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The first organically templated 3D borogermanate with a novel zeolite-type topology, (C4N3H15)[(BO2)2(GeO2)4] FJ-17, has been solvothermally synthesized and characterized by IR spectroscopy, powder X-ray diffraction (PXRD), TGA, and single-crystal X-ray diffraction. The compound crystallized in the monoclinic space group P2(1)/c with a = 6.967(1) A, b = 10.500(1) A, c = 20.501(1) A, beta = 90.500(3) degrees , V = 1499.68(8) A3, and Z = 4. The framework topology of this compound is the previously unknown topology with the vertex symbols 3.4.3.9.3.8(2) (vertex 1), 3.8.3.4.6(2).9(2) (vertex 2), 3.8(2).4.6(2).6(2).8 (vertex 3), 4.8.4.8.8(3).12 (vertex 4), 4.8.4.8.8(2).12 (vertex 5), and 3.8.4.6(2).6.8(2) (vertex 6). The structure is constructed from Ge8O24 and B2O7 clusters. The Ge8O24 cluster contains eight GeO4 tetrahedra that share vertices; the B2O7 unit is composed of two BO4 tetrahedra sharing a vertex. The cyclic Ge8O24 clusters connect to each other through vertices to form a 2D layer with 8,12-nets. The adjacent layers are further linked by the dimeric B2O7 cluster units, resulting in a 3D framework with 12- and 8-ring channels along the a and b axes, respectively. In addition, there is a unique B2GeO9 3-ring in the structure.  相似文献   

2.
The novel microporous germanate (NH4)4[(GeO2)3(GeO1.5F3)2].0.67H2O was prepared from an aqueous solution containing germanium dioxide, pyridine, hydrofluoric acid, and 2,6-diaminopyridine as a template. The solution was kept at 165 degrees C in a Teflon-lined autoclave for 4 days. Large crystals were produced and studied by X-ray powder diffraction, FTIR, thermal analysis, and elemental analysis. The structure was determined by single-crystal X-ray diffraction. The crystal is orthorhombic, space group Pbcn, with a = 7.0065(4) A, b = 11.7976(6) A, c = 19.5200(14) A, and Z = 4. The structure is a layered framework built up from GeO4 tetrahedral and GeO3F3 octahedral units. The polyhedral units are connected in such a way that they form a zeolite-like porous structure with three- and nine-membered rings. Half of the ammonium ions are located inside the nine-membered rings. The other half are above and below the three-membered rings. The connectivity of the germanium polyhedral units is interrupted along the c axis by ammonium ions and water molecules inserted between the layers.  相似文献   

3.
The title compound, dipiperazinium heptazinc hexakis(arsen­ate) dihydrate, is built from vertex‐sharing AsO4 tetrahedra, ZnO4 tetrahedra and ZnO5 trigonal bipyramids. The connectivity between these polyhedra give rise to an open framework with eight‐ring channels along the crystallographic [001] and [011] directions. The piperazinium cations are located within these channels.  相似文献   

4.
NC12H8(NH)2[Gd(N3C12H8)4] and [Gd(N3C12H8)3(N3C12H9)]·PhCN: A Contribution to the Reactivity and Crystal Chemistry of Homoleptic Pyridylbenzimidazolates of the Rare Earth Elements Transparent colourless crystals of the compound NC12H8(NH)2[Gd(N3C12H8)4] were obtained by solvent‐free reaction of gadolinium metal with molten 2‐(2‐Pyridyl)‐benzimidazole. Transparent yellow crystals of the compound [Gd(N3C12H8)3(N3C12H9)]·PhCN were obtained by further reacting NC12H8(NH)2[Gd(N3C12H8)4] with benzonitrile thermally. Both compounds exhibit homoleptic pure nitrogen coordinations of gadolinium, the PhCN ligand is not coordinating. Whilst NC12H8(NH)2[Gd(N3C12H8)4] is salt like and consists of (NC12H8(NH)2)+ and [Gd(N3C12H8)4] ions, [Gd(N3C12H8)3(N3C12H9)]·PhCN has a molecular structure of uncharged [Gd(N3C12H8)3(N3C12H9)] units.  相似文献   

5.
Trimethylamine‐tris(pentafluoroethyl)borane [(C2F5)3BNMe3] ( 1 ) reacts at 190 °C with water under displacement of the trimethylamine ligand to yield the hydroxy‐tris(pentafluoroethyl)borate [(C2F5)3BOH]? ( 2 ). In tributylamine 1 reacts with alkynes HC≡CR to form novel ethynyl‐tris(pentafluoroethyl)borate anions [(C2F5)3BC≡CR]? – R = C6H5 ( 3 ), C6H4CH3 ( 4 ), Si(CH(CH3)2)3 ( 5 ) – in moderate yields. Compound 3 adds water across the triple bond to form the novel anion [(C2F5)3BCH2(CO)C6H5]? ( 6 ). The structures of [(C2F5)3BNMe3], [NMe4][(C2F5)3BOH] and K[(C2F5)3BCH2(CO)C6H5] have been determined by x‐ray crystallography.  相似文献   

6.
In the system ZnO/H3PO4/H2O/1,4‐diazacycloheptane (C5H12N2), a new zincophosphate (ZnPO), (C5H14N2)[Zn3(HPO4)4] ( I ), was prepared by hydrothermal transformation (180 °C) of the known ZnPO hydrate (C5H14N2)[Zn2(HPO4)3]·H2O ( II ). The thermally‐induced transformation is reversible; upon keeping the heterogeneous mixture of I and mother liquor at 80 °C recrystallization of II was observed. Single‐crystal X‐ray crystallography revealed that I possesses a unique three‐dimensional (3D) open‐framework structure built from corner‐linked ZnO4 and HPO4 tetrahedra. The (3,4)‐connected framework of I differs considerably from the 3D open‐framework ZnPO structure of II . Crystal data for I : Monoclinic system, space group Cc (No. 9) , Z = 4, a = 9.1389(6), b = 23.627(2), c = 9.3073(6) Å, β = 109.463(7)°, T = 298 K.  相似文献   

7.
The synthesis of the following mixed ligand organotellurium(IV) compounds C8H8Te(S2CNEt2)[(SPPh2)2N] · H2O ( 1 ), C8H8Te(S2CNC5H10)[(SPPh2)2N] ( 2 ), C8H8Te(S2CNC4H8O)[(SPPh2)2N] ( 3 ) and C8H8Te(S2CNC4H8S)[(SPPh2)2N] ( 4 ) was achieved. They were characterized by IR, 1H, 13C, 31P and 125Te NMR, mass spectroscopy, and elemental analyses. The X‐ray crystal structures of 1 , 2 and 4 were determined. The both types of ligands display an asymmetrical chelating coordination mode on interaction with the tellurium atom. When these aniso‐bonded donor atoms are included in the coordination sphere, the tellurium atom exhibit an effective co‐ordination number of seven. The arrangement may be described as 1 : 2 : 2 : 2 coordination with a presumably stereoactive lone‐pair of electrons.  相似文献   

8.
9.
A three‐dimensional anionic framework built up from [ZnO4] tetra­hedra and planar [BO3] groups, stabilized by H atoms, has been found for hydrogen zinc oxide borate, H[Zn6O2(BO3)3]. Boron and one of the borate O atoms are on 18e (2) positions. Triple units of [ZnO4] tetra­hedra sharing a common oxygen vertex on a 12c (3) site and strong asymmetrical linear hydrogen bonds with the H atom [on a 12c (3) position] disordered over a twofold axis are specific structural features of this zincoborate. There is evidence that the reported Zn4O(BO3)2 [Harrison, Gier & Stuky (1993). Angew. Chem. Int. Ed. Engl. 32 , 724–726] corresponds to this structure.  相似文献   

10.
11.
12.
以三聚氰胺和硼酸为原料在水溶液中反应合成出了一种新的BCN化合物先驱体C3N6H6(H3BO3)2。XRD表征结果表明三聚氰胺和硼酸的最佳配比为1∶3(物质的量比)。用单晶X-射线衍射分析法测定了该化合物的晶体结构。该化合物属单斜晶系,空间群为P21/C,晶胞参数为a=0.3597(7)nm,b=2.0105(4)nm,c=1.4112(3)nm,α=90,°β=92.07(3),°γ=90,°V=1.0199(3)nm3,Z=4,D c=1.627g.cm-3,μ(MoKα)=0.144mm-1,F(000)=520。晶体结构经全矩阵最小二乘法修正,最终可靠因子R1=0.0519,wR2=0.1361。该化合物是由C3N6H6分子和H3BO3分子通过氢键加合组装形成的三维超分子结构化合物。  相似文献   

13.
Crystals of the oxyfluorinated gallium phosphate MIL‐12 (digallium phosphate penta­fluoride propane‐1,3‐diaminium), (C3H12N2)[Ga2(PO4)F5], were synthesized hydro­thermally at 453 K under autogenous pressure using propane‐1,3‐diamine as the structure‐directing agent. The title compound is isomorphous with the aluminium phosphate having the MIL‐12 structural type. The structure is built up from a two‐dimensional anionic network inter­calated by the diamine species. The inorganic layer is composed of corner‐linked GaO2F4 octa­hedra and PO4 tetra­hedra. The diprotonated diamine group is located on a mirror plane, between the inorganic sheets, and inter­acts preferentially via hydrogen bonding through the ammonium groups and the terminal F and bridging O atoms of the inorganic layer. One of the Ga atoms lies on an inversion centre and the other lies on a mirror plane, as does the P atom, two of the phosphate O atoms and one of the F atoms.  相似文献   

14.
(Me2NH2)[(Ph3Sn)3(MoO4)2], a Triorganotin Molybdate with Layer Structure The reaction of [(Ph3Sn)2MoO4] with (Me2NH2)Cl in an acetonitrile/water mixture leads to the formation of (Me2NH2)[(Ph3Sn)3(MoO4)2] ( 1 ). ( 1 ) crystallizes in the space group Pca21 with a = 1967.0(4), b = 1353.1(2) and c = 2176.6(5) pm. In the crystal structure of 1 Ph3SnO2 bipyramides and MoO4 tetrahedra are linked by corner sharing to give a layer structure. Additionally the layers are connected by O···H···N hydrogen bridges between MoO4 groups and [Me2NH2]+ ions to give a 3D network structure.  相似文献   

15.
Three new strontium vanadium borophosphate compounds, (NH4)2(C2H10N2)6[Sr(H2O)5]2[V2P2BO12]6 10H2O (Sr-VBPO1) (1), (NH4)2(C3H12N2)6[Sr(H2O)4]2[V2P2BO12]6 17H2O (Sr-VBPO2) (2), and (NH4)3(C4H14N2)4.5[Sr(H2O)5]2[Sr(H2O)4][V2P2BO12]6 10H2O (Sr-VBPO3) (3) have been synthesized by interdiffusion methods in the presence of diprotonated ethylenediamine, 1,3-diaminopropane, and 1,4-diaminobutane. Compound 1 has a chain structure, whereas 2 and 3 have layered structures with different arrangements of [(NH4) [symbol: see text] [V2P2BO12]6] cluster anions within the layers. Crystal data: (NH4)2(C2H10N2)6[Sr(H2O)5]2[V2P2BO12]6 10H2O, monoclinic, space group C2/c (no. 15), a = 21.552(1) A, b = 27.694(2) A, c = 20.552(1) A, beta = 113.650(1) degrees, Z = 4; (NH4)2(C3H12N2)6[Sr(H2O)4]2[V2P2BO12]6 17H2O, monoclinic, space group I2/m (no. 12), a = 15.7618(9) A, b = 16.4821(9) A, c = 21.112(1) A, beta = 107.473(1) degrees, Z = 2; (NH4)3(C4H14N2)4.5[Sr(H2O)5]2[Sr(H2O)4] [V2P2BO12]6 10H2O, monoclinic, space group C2/c (no. 15), a = 39.364(2) A, b = 14.0924(7) A, c = 25.342(1) A, beta = 121.259(1) degrees, Z = 4. The differences in the three structures arise from the different steric requirements of the amines that lead to different amine-cluster hydrogen bonds.  相似文献   

16.
由于在电学、磁学、光学、吸附、离子交换和催化等领域具有潜在的应用价值,具有开放骨架结构的金属磷酸盐的合成一直受到人们的广泛关注。在这些磷酸盐微孔化合物中,磷酸锌晶体是拓扑结构最为丰富的一种犤1犦。自从Stucky等犤2犦报道具有SOD、Li-ABW、FAU等已知结构磷酸锌的合成以来,已经有近百种具有0-D犤3,4犦,1-D犤5,6犦,2-D犤7~9犦,3-D犤10~13犦结构的磷酸锌被成功地合成出来。其中令人瞩目的是具有螺旋孔道的手性磷酸锌犤14犦以及具有二十四元环孔道的两种微孔磷酸锌化合物犤15,16犦的合成。这些化合物大多是采用水热技术以有…  相似文献   

17.
The crystal structures of the monomeric palladium(II) azide complexes of the type L2Pd(N3)2 (L = PPh3 ( 1 ), AsPh3 ( 2 ), and 2‐chloropyridine ( 3 )), the dimeric [(AsPh4)2][Pd2(N3)4Cl2] ( 4 ), the homoleptic azido palladate [(PNP)2][Pd(N3)4] ( 5 ) and the homoleptic azido platinates [(AsPh4)2][Pt(N3)4] · 2 H2O ( 6 ) and [(AsPh4)2][Pt(N3)6] ( 7 ) were determined by X‐ray diffraction at single crystals. 1 and 2 are isotypic and crystallize in the triclinic space group P1. 1 , 2 and 3 show terminal azide ligands in trans position. In 4 the [Pd2(N3)4Cl2]2– anions show end‐on bridging azide groups as well as terminal chlorine atoms and azide ligands. The anions in 5 and 6 show azide ligands in equal positions with almost local C4h symmetry at the platinum and palladium atom respectively. The metal atoms show a planar surrounding. The [Pt(N3)6]2– anions in 7 are centrosymmetric (idealized S6 symmetry) with an octahedral surrounding of six nitrogen atoms at the platinum centers.  相似文献   

18.
19.
Pseudohalogeno Metal Compounds. LXXVIII. Structures of Planar and Tetrahedral Tetrafulminato Metal Complexes: [N(C3H7)4]2 [Ni(CNO)4], [N(C3H7)4]2 [Pt(CNO)4], and [N(C3H7)4]2 [Zn(CNO)4] The crystals contain the tetrafulminatometallates of an ideal square planar structure ([Ni(CNO)4]2–, [Pt(CNO)4]2–) with D4h symmetry at the nickel and platinum atom and a tetrahedron ([Zn(CNO)4]2–) with perfect Td symmetry at the zinc atom and with linear C≡N–O ligands. The metal carbon bonds (Ni–C: 187 pm, Pt–C: 200 pm, Zn–C: 201 pm) of the metal fulminates are very close to those of the corresponding cyano complexes. In the crystals the anions ([Ni(CNO)4]2–, [Pt(CNO)4]2–, [Zn(CNO)4]2–) are separated by the cations ([N(C3H7)4]+) which explains the thermal stability of these compounds.  相似文献   

20.
The compounds (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y, Tb, Yb, and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), with Ln = La, Sm, Eu, were obtained by reactions of the group 3 metals yttrium and lanthanum as well as the lanthanides europium, samarium, terbium, and ytterbium with 2-(2-pyridyl)-benzimidazole. The reactions were carried out in melts of the amine without any solvent and led to two new groups of homoleptic rare earth pyridylbenzimidazolates. The trivalent rare earth atoms have an eightfold nitrogen coordination of four chelating pyridylbenzimidazolates giving an ionic structure with either pyridylbenzimidazolium or [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)](+) counterions. With Y, Eu, Sm, and Yb, single crystals were obtained whereas the La- and Tb-containing compounds were identified by powder methods. The products were investigated by X-ray single crystal or powder diffraction and MIR and far-IR spectroscopy, and with DTA/TG regarding their thermal behavior. They are another good proof of the value of solid-state reaction methods for the formation of homoleptic pnicogenides of the lanthanides. Despite their difference in the chemical formula, both types (NC(12)H(8)(NH)(2))[Ln(N(3)C(12)H(8))(4)], Ln = Y (1), Tb (2), Yb (3), and [Ln(N(3)C(12)H(8))(2)(N(3)C(12)H(9))(2)][Ln(N(3)C(12)H(8))(4)](N(3)C(12)H(9))(2), Ln = La (4), Sm (5), Eu (6), crystallize isotypic in the tetragonal space group I4(1). Crystal data for (1): T = 170(2) K, a = 1684.9(1) pm, c = 3735.0(3) pm, V = 10603.5(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.053, wR2 = 0.113. Crystal data for (3): T = 170(2) K, a = 1683.03(7) pm, c = 3724.3(2) pm, V = 10549.4(14) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.047, wR2 = 0.129. Crystal data for (5): T = 103(2) K, a = 1690.1(2) pm, c = 3759.5(4) pm, V = 10739(2) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.050, wR2 = 0.117. Crystal data for (6): T = 170(2) K, a = 1685.89(9) pm, c = 3760.0(3) pm, V = 10686.9(11) x 10(6) pm(3), R1 for F(o) > 4sigma(F(o)) = 0.060, wR2 = 0.144.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号