首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rubidium chromium(III) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­chromium(III)­rubidium(I)], [RbCr(C2O4)2(H2O)2], (I), and dicaesium magnesium dioxalate tetrahydrate [tetra­aqua­bis(μ‐oxalato)­magnesium(II)­dicaesium(I)], [Cs2Mg(C2­O4)2(H2O)4], (II), have layered structures which are new among double‐metal oxalates. In (I), the Rb and Cr atoms lie on sites with imposed 2/m symmetry and the unique water molecule lies on a mirror plane; in (II), the Mg atom lies on a twofold axis. The two non‐equivalent Cr and Mg atoms both show octahedral coordination, with a mean Cr—O distance of 1.966 Å and a mean Mg—O distance of 2.066 Å. Dirubid­ium copper(II) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­copper(II)­dirubidium(I)], [Rb2Cu(C2O4)2(H2O)2], (III), is also layered and is isotypic with the previously described K2‐ and (NH4)2CuII(C2O4)2·2H2O compounds. The two non‐equivalent Cu atoms lie on inversion centres and are both (4+2)‐coordinated. Hydro­gen bonds are medium‐strong to weak in the three compounds. The oxalate groups are slightly non‐planar only in the Cs–Mg compound, (II), and are more distinctly non‐planar in the K–Cu compound, (III).  相似文献   

2.
In order to model processes of chemisorption in organic salts formed between di­nitro­benzoic acids (DNBH) and secondary amines (R2NH), a series of compounds of composition [MII(3,5‐DNB)2(DMSO)2(H2O)2] (where MII is Zn, Cu, Ni or Co, 3,5‐DNB is the 3,5‐di­nitro­benzoate ion, and DMSO is di­methyl sulfoxide) have been prepared. In di­aqua­bis­(di­methyl sulf­oxide)­bis(3,5‐DNB)­zinc(II), [Zn(C7H3N2O6)2(C2H6OS)2(H2O)2], the 3,5‐DNB ions and mol­ecules of DMSO are monodentate ligands that are coordinated to the Zn atom through their O atoms. These ligands, together with two mol­ecules of water, form a slightly distorted octahedral coordination environment for the Zn atom, which lies on a center of symmetry.  相似文献   

3.
The reaction of the diazine ligand 3,5‐bis(2‐pyridinyl)‐1,3,4‐oxa­diazole (pod, C12H8N4O), with Cu(CF3SO3)2 or Ni(ClO4)2 afforded the title complexes di­aqua­bis­[3,5‐bis(2‐pyridinyl)‐1,3,4‐oxa­diazole‐N2,N3]copper(II) bis­(tri­fluoro­methane­sul­fon­ate), [Cu(pod)2(H2O)2](CF3SO3)2, and di­aqua­bis­[3,5‐bis(2‐pyridinyl)‐1,3,4‐oxa­diazo­le‐N2,N3]­nickel(II) diperchlorate, [Ni(pod)2(H2O)2](ClO4)2. Both complexes present a crystallographically centrosymmetric mononuclear cation structure which consists of a six‐coordinated CuII or NiII ion with two pod mol­ecules acting as bidentate ligands and two axially coordinated water mol­ecules.  相似文献   

4.
Partial reduction of the CuII ions in the aqueous system CuII–en–[Ni(CN)4]2? (1/1/1) (en is 1,2‐di­amino­ethane) yields a novel heterobimetallic mixed‐valence compound, poly­[[aqua­bis(1,2‐di­amino­ethane)copper(II)] [hexa‐μ‐cyano‐tetra­cyano­bis(1,2‐di­amino­ethane)­tricopper(I,II)­dinickel(II)] dihydrate], [Cu(C2H8N2)2(H2O)][Ni2Cu3(CN)10(C2H8N2)2]·2H2O or [Cu(en)2(H2O)][Cu(en)2Ni2Cu2(CN)10]·2H2O. The structure is formed by a negatively charged two‐dimensional array of the cyano complex [Cu(en)2Ni2Cu2(CN)10]n2n?, [Cu(en)2(H2O)]2+ complex cations and water mol­ecules of crystallization. These last are involved in a complicated hydrogen‐bonding system. The cyano groups act as terminal, μ2‐bridging or μ3‐bridging ligands.  相似文献   

5.
The title compound, [Mg(C5H4NOS)2(H2O)2]·C10H8N2O2S2, is a two‐component host–guest material. The 2,2′‐di­thio­bis(pyridine N‐oxide) molecule has crystallographic twofold symmetry. The metal complex lies on an inversion centre and associates via C—H?S interactions into chains which thread the 2,2′‐di­thio­bis­(pyridine N‐oxide) lattice in perpendicular directions. Hydro­gen bonds exist between the water mol­ecules of the di­aqua­magnesium units and the N—O groups of the host lattice.  相似文献   

6.
The structure of di­chloro­[1‐(p‐chloro­benzyl)‐2‐(1‐pyrrol­idinyl­methyl‐N)‐1,3‐benz­imidazole‐N3]­cobalt(II), [Co­Cl2(C19­H20ClN3)], contains a mol­ecule of clemizole bound in a bidentate manner to cobalt through its imidazole and pyrrolidinyl N atoms, with significantly different Co—N distances of 1.976 (5) and 2.126 (5) Å, respectively. The geometry around cobalt is distorted tetrahedral, with significantly different Co—Cl distances of 2.217 (2) and 2.233 (2) Å, and the pyrrolidinyl ring is disordered.  相似文献   

7.
The title compound, poly­[[[di­aqua(μ‐4,4′‐bipyridyl)­di­nickel(II)]‐bis(μ‐4,4′‐bipyridyl)‐di‐μ‐hexa­oxo­di­vana­date(2?)] 2.5‐hydrate], [Ni2­(V2O6)2­(C10H8N2)3­(H2O)2]·­2.5H2O, has been prepared hydro­thermally and characterized by elemental analyses, IR spectroscopy and single‐crystal X‐ray diffraction. The structure consists of [V2O6], [Ni­(4,4′‐bipy)4O2] and [Ni­(H2O)2­(4,4′‐bipy)2O2] polyhedra, and water of crystallization. The Ni atoms and one bipyridyl group lie on centres of symmetry.  相似文献   

8.
trans‐Di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­cobalt(II) dihydrate, [Co(C10H6NO2)2(H2O)2]·2H2O, and trans‐di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­nickel(II) dihydrate, [Ni(C10H6NO2)2(H2O)2]·2H2O, contain the same isoquinoline ligand, with both metal atoms residing on a centre of symmetry and having the same distorted octahedral coordination. In the former complex, the Co—O(water) bond length in the axial direction is 2.167 (2) Å, which is longer than the Co—O(carboxylate) and Co—N bond lengths in the equatorial plane [2.055 (2) and 2.096 (2) Å, respectively]. In the latter complex, the corresponding bond lengths for Ni—O(water), Ni—O(carboxylate) and Ni—N are 2.127 (2), 2.036 (2) and 2.039 (3) Å, respectively. Both crystals are stabilized by similar stacking interactions of the ligand, and also by hydrogen bonds between the hydrate and coordinated water molecules.  相似文献   

9.
The title compounds, hexa­aqua­cobalt(II) bis­(hypophosphite), [Co(H2O)6](H2­PO2)2, and hexa­aqua­cobalt(II)/nickel(II) bis(hypophosphite), [Co0.5Ni0.5(H2O)6](H2PO2)2, are shown to adopt the same structure as hexa­aqua­magnesium(II) bis­(hypophosphite). The packing of the Co(Ni) and P atoms is the same as in the structure of CaF2. The CoII(NiII) atoms have a pseudo‐face‐centred cubic cell, with a = b~ 10.3 Å, and the P atoms occupy the tetrahedral cavities. The central metal cation has a slightly distorted octahedral coordination sphere. The geometry of the hypophosphite anion in the structure is very close to ideal, with point symmetry mm2. Each O atom of the hypophosphite anion is hydrogen bonded to three water mol­ecules from different cation complexes, and each H atom of the hypophosphite anion is surrounded by three water mol­ecules from further different cation complexes.  相似文献   

10.
The title complexes, trans‐di­aqua­bis­(quinoline‐2‐carboxyl­ato‐κ2N,O)­cobalt(II)–water–methanol (1/2/2), [Co(C10H6NO2)2(H2O)2]·2CH4O·2H2O, and trans‐di­aqua­bis­(quinoline‐2‐car­box­yl­ato‐κ2N,O)­nickel(II)–water–methanol (1/2/2), [Ni(C10H6NO2)2(H2O)2]·2CH4O·2H2O, are isomorphous and contain CoII and NiII ions at centers of inversion. Both complexes have the same distorted octahedral coordination geometry, and each metal ion is coordinated by two quinoline N atoms, two carboxyl­ate O atoms and two water O atoms. The quinoline‐2‐carboxyl­ate ligands lie in trans positions with respect to one another, forming the equatorial plane, with the two water ligands occupying the axial positions. The complex mol­ecules are linked together by hydrogen bonding involving a series of ring patterns which include the uncoordinated water and methanol mol­ecules.  相似文献   

11.
The title compound, [Ni(C3H10N2)2(H2O)2](C6H6NO3S)2, contains alternating layers of sulfanilate anions and di­aqua­bis(1,3‐propane­di­amine)­nickel(II) cations. The Ni atom lies on an inversion centre and is hexacoordinated by the 1,3‐propane­di­amine ligands, which function as N,N′‐bidentate ligands, and the water mol­ecules, which are in a trans arrangement. The sulfanilate anions are arranged in layers, with the sulfonate and amine groups directed towards opposite sides of the layer. The structure is stabilized by a network of hydrogen bonding between the O and N atoms of the sulfanilate anions, the water mol­ecules, and the N atoms of the 1,3‐propane­di­amine ligands.  相似文献   

12.
Each of the title compounds, 8‐methoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane hemisolvate, [Pt(CH14B10O)(C18H15P)2]·0.5CH2Cl2, (I), 8‐isopropoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane solvate, [Pt(C3H18B10O)(C18H15P)2]·CH2Cl2, (II), and 9‐isopropoxy‐7,7‐bis­(tri­phenyl­phosphine‐P)‐8,9:10,11‐di‐μH‐7‐platina‐nido‐undecaborane di­chloro­methane solvate, [Pt(C3H18B10O)(C18H15P)2]·CH2Cl2, (III), has an 11‐vertex nido polyhedral skeleton, with the 7‐platinum centre ligating to two exo‐polyhedral PPh3 groups and an alkoxy‐substituted polyhedral borane ligand. Compounds (II) and (III) are isomers. The Pt—B distances are in the range 2.214 (7)–2.303 (7) Å for (I), 2.178 (16)–2.326 (16) Å for (II) and 2.205 (6)–2.327 (6) Å for (III).  相似文献   

13.
2,5‐Di­chloro‐3,6‐di­hydroxy‐1,4‐benzo­quinone (chloranilic acid) forms X—H?Y (X, Y = N or O) and C—H?Cl hydrogen bonds with pyrazole and imidazole to afford bis­(pyrazolium) di­chloro­anilate and bis­(imidazolium) di­chloro­anilate, (I) and (II), both 2C3H5N2+·C6Cl2O42?, and imidazolium chloro­anilate aceto­nitrile solvate, C3H5N2+·­C6HCl2O4?·C2H3N, (III). Their crystal structures demonstrate three novel supramolecular architectures based on supramolecular synthons to build a ladder, (I), a two‐dimensional network, (II), and a flat ribbon, (III).  相似文献   

14.
The title compound, bis[di­aqua­bis­(ethyl­enedi­amine‐κ2N,N′)copper(II)­] hexa­cyano­iron(II) tetrahydrate, [Cu(C2H8N2)2(H2O)1.935]2[Fe(CN)6]·4H2O, was crystallized from an aqueous reaction mixture initially containing CuSO4, K3[Fe(CN)6] and ethyl­enedi­amine (en) in a 3:2:6 molar ratio. Its structure is ionic and is built up of two crystallographically different cations, viz. [Cu(en)2(H2O)2]2+ and [Cu(en)2(H2O)1.87]2+, there being a deficiency of aqua ligands in the latter, [Fe(CN)6]4− anions and disordered solvent water mol­ecules. All the metal atoms lie on centres of inversion. The Cu atom is octahedrally coordinated by two chelate‐bonded en mol­ecules [mean Cu—N = 2.016 (2) Å] in the equatorial plane, and by axial aqua ligands, showing very long distances due to the Jahn–Teller effect [mean Cu—O = 2.611 (2) Å]. In one of the cations, significant underoccupation of the O‐atom site is observed, correlated with the appearance of a non‐coordinated water mol­ecule. This is interpreted as the partial contribution of a hydrate isomer. The [Fe(CN)6]4− anions form quite regular octahedra, with a mean Fe—C distance of 1.913 (2) Å. The dominant intermolecular interactions are cation–anion O—H⋯N hydrogen bonds and these inter­actions form layers parallel to (001).  相似文献   

15.
The organic ligands 4‐methyl‐1H‐imidazole and 2‐ethyl‐4‐methyl‐1H‐imidazole react with Cu(CF3SO3)2·6H2O to give tetrakis(5‐methyl‐1H‐imidazole‐κN3)­cop­per(II) bis­(tri­fluoro­methane­sulfonate), [Cu(C4H6N2)4](CF3SO3)2, and aqua­tetrakis(2‐ethyl‐5‐methyl‐1H‐imidazole‐κN3)copper(II) bis(tri­ fluoro­methane­sulfonate), [Cu(C6H10N2)4(H2O)](CF3SO3)2. In the former, the Cu atom has an elongated octahedral coordination environment, with four imidazole rings in equatorial positions and two tri­fluoro­methane­sulfonate ions in axial positions. This conformation is similar to those in the analogous complexes tetrakis­(imidazole)­cop­per(II) tri­fluoro­methane­sulfonate and tetrakis(2‐methyl‐1H‐imidazole)­cop­per(II) tri­fluoro­methane­sulfonate. In the second of the title compounds, the ethyl groups block the central Cu atom, and a square‐pyramidal coordination environment is formed around the Cu atom, with the substituted imidazole rings in the basal positions and a water mol­ecule in the axial position.  相似文献   

16.
The title octahedral complexes, [bis(pyridine‐2‐carbonyl)­amin­ate]­di­chloro­(methanol)­iron(III), [Fe(C12H8N3O2)­Cl2‐(CH4O)], and [bis­(pyri­dine‐2‐carbonyl)­amin­ate]­di­chloro‐(ethanol)­iron(III), [Fe­(C12H8N3O2)Cl2(C2H6O)], both crystallize in space group and have similar structures. Mono­anionic bpca? [bis(pyridine‐2‐carbonyl)­amin­ate] acts as a planar tridentate ligand in both cases. Coordination bond distances are in the range typical of high‐spin FeIII complexes. Carbon–oxygen distances are typical of a C=O double bond suggesting the negative charge of the bpca? ligand is localized on the central N atom.  相似文献   

17.
The structure of the title compound, aqua­[μ‐(N1‐carboxylato­methyl­guanidino)­oxidoacetato](μ‐guanidino­acetic acid)­di­copper(II) nitrate dihydrate, [Cu2(C5H6N3O5)(C3H7N3O2)(H2O)]NO3·2H2O, contains two enantiomers of the di­copper(II) complex cation that comprise water, neutral zwitterionic guanidino­acetic acid and the trianion of (N1‐carboxy­methyl­guanidino)­hydroxy­acetic acid as ligands. Extensive hydrogen bonding creates three‐dimensional connectivity but is largely confined to layers that each contain both cation enantiomers. These layers are related to one another by crystallographic symmetry and are therefore identical in composition and connectivity.  相似文献   

18.
The crystal structure of the title compound, (bi­cyclo­[2.2.1]­hepta‐2,5‐diene)­di­chloro­platinum(II), [PtCl2(C7H8)], has been determined from single‐crystal X‐ray analysis. The coordination sphere about the Pt atom is pseudo‐square planar, with shorter Pt—C distances than in the corresponding di­chloro­(cyclo­octa­diene)­platinum(II) complex.  相似文献   

19.
The crystal structures of three compounds of glycine and inorganic materials are presented and discussed. The ortho­rhombic structure of glycinesulfatodilithium(I), [Li2(SO4)(C2H5NO2)]n, consists of corrugated sheets of [LiO4] and [SO4] tetrahedra. The glycine mol­ecules are located between these sheets. The main features of the monoclinic structure of di­aqua­di­chloro­glycinenickel(II), [NiCl2(C2H5NO2)(H2O)2]n, are helical chains of [NiO4Cl2] octahedra connected by glycine mol­ecules. The orthorhombic structure of tri­aqua­glycinesulfatozinc(II), [Zn(SO4)(C2H5NO2)(H2O)3]n, is made up of [O3SOZnO5] clusters. These clusters are linked by glycine mol­ecules into zigzag chains. All three compounds are examples of non‐centrosymmetric glycine compounds.  相似文献   

20.
In the title complex salt, tetra­kis[hexa­ammine­cobalt(III)] hexa­chloro­cadmate(II) bis­[aqua­tetra­chloro­thio­cyanato­cad­mate(II)] dichloride dihydrate, the discrete ions, i.e. [Co(NH3)6]3+, Cl, [CdCl6]4− (located on an inversion centre) and [CdCl4(SCN)(H2O)]3−, together with cocrystallized water mol­ecules, are assembled by means of a network of hydrogen‐bonding inter­actions. This is the first X‐ray structure determination of a hexa­amminecobalt(III) salt with two different complex chloro­cadmium anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号