首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the title compound, C15H12N2O4, consists of a polymeric arrangement, around inversion centres, of mol­ecules linked through O—H⋯N and O—H⋯O hydrogen bonds; there are also intramolecular hydrogen bonds. All these hydrogen‐bond interactions result in the formation of infinite chains parallel to the [010] direction. The oxime group has an E conformation.  相似文献   

2.
In ethyl N‐[2‐(hydroxy­acetyl)phenyl]carbamate, C11H13NO4, all of the non‐H atoms lie on a mirror plane in the space group Pnma; the mol­ecules are linked into simple chains by a single C—H⋯O hydrogen bond. The mol­ecules of ethyl N‐[2‐(hydroxy­acetyl)‐4‐iodo­phenyl]carbamate, C11H12INO4, are linked into sheets by a combination of O—H⋯I and C—H⋯O hydrogen bonds and a dipolar I⋯O contact. Ethyl N‐­[2‐(hydroxy­acetyl)‐4‐methyl­phenyl]carbamate, C12H15NO4, crystallizes with Z′ = 2 in the space group P; pairs of mol­ecules are weakly linked by an O—H⋯O hydrogen bond and these aggregates are linked into chains by two independent aromatic π–π stacking inter­actions.  相似文献   

3.
In the adduct 1,2‐bis(4‐pyridyl)­ethane–1,1,1‐tris(4‐hydroxy­phenyl)­ethane (1/2), C12H12N2·2C20H18O3, the bipyridyl component lies across an inversion centre in P. The tris‐phenol mol­ecules [systematic name: 4,4′,4′′‐(ethane‐1,1,1‐triyl)­triphenol] are linked by O—H?O hydrogen bonds to form sheets built from R(38) rings, and symmetry‐related pairs of sheets are linked by the bipyridyl mol­ecules via O—H?N hydrogen bonds to form open bilayers. Each bilayer is interwoven with two adjacent bilayers, forming a continuous three‐dimensional structure. In the adduct 1,2‐bis(4‐pyridyl)­ethene–1,1,1‐tris(4‐hydroxy­phenyl)­ethane–methanol (1/1/1), C12H10N2·C20H18O3·CH4O, the mol­ecules are linked by O—H?O and O—H?N hydrogen bonds into three interwoven three‐dimensional frameworks, generated by single spiral chains along [010] and [001] and a triple‐helical spiral along [100].  相似文献   

4.
There are two mol­ecules, C15H14N2O3, in the asymmetric unit of the title compound, the first structurally characterized carbamoyl benzaldehyde oxime derivative; these mol­ecules do not differ significantly. Inter­molecular N—H⋯O hydrogen bonds connect mol­ecules into infinite …ABAB… ribbons along the [100] direction.  相似文献   

5.
In the neutral title complex, trans‐bis(2,2′‐imino­di­ethanol‐N,O)­bis­(iso­thio­cyanato)­nickel(II), [Ni(NCS)2(C4H11NO2)2], the iso­thio­cyanate ions and the di­ethanol­amine mol­ecules act as mono­dentate and bi­dentate ligands, respectively. The NiII ion exhibits a distorted octahedral configuration with crystallographically imposed inversion symmetry and NNCS—Ni—Namine and NNCS—Ni—Oamine bond angles of 88.78 (10) and 89.44 (10)°, respectively. The Ni—N bond distances are in the range 2.069 (3)–2.096 (2) Å. The mol­ecules are linked by hydrogen bonds to form a three‐dimensional infinite lattice.  相似文献   

6.
In the mol­ecule of the title compound, C16H13BrO, the two benzene rings are rotated in opposite directions with respect to the central C—C=C—C part of the mol­ecule. The phenone O atom deviates from the least‐squares plane of the mol­ecule by 0.300 (3) Å. In the crystal structure, mol­ecules are paired through C—H⋯π interactions. The molecular pairs along [001] are hydrogen bonded through three translation‐related co‐operative hydrogen bonds in the `bay area', forming molecular chains, which are further hydrogen bonded through C—H⋯Br weak interactions, forming (010) molecular layers. In the third direction, there are only weak van der Waals interactions. The co‐operative hydrogen bonds in the `bay area' are discussed briefly.  相似文献   

7.
The mol­ecules of N,N′‐bis­(2‐pyridylmeth­yl)ferrocene‐1,1′‐diyl­dicarboxamide, [Fe(C12H11N2O)2], contain intra­molecular N—H⋯N hydrogen bonds and are linked into sheets by three independent C—H⋯O hydrogen bonds. The mol­ecules of the isomeric compound N,N′‐bis­(3‐pyridylmeth­yl)ferrocene‐1,1′‐diyldicarboxamide lie across inversion centres, and the mol­ecules are linked into sheets by a combination of N—H⋯N hydrogen bonds and π–π stacking inter­actions between pyridyl groups.  相似文献   

8.
2,2‐Di­methyl‐5‐[3‐(4‐methyl­phenyl)‐2‐propenyl­idene]‐1,3‐di­ox­ane‐4,6‐dione, C16H16O4, crystallizes in the triclinic space group , with two mol­ecules in the asymmetric unit. These mol­ecules and a centrosymmetrically related pair, linked together by weak C—H?O hydrogen bonds, form a tetramer. 5‐[3‐(4‐Chloro­phenyl)‐2‐propenyl­idene]‐2,2‐di­methyl‐1,3‐dioxane‐4,6‐dione, C15H13ClO4, also crystallizes in the triclinic space group , with one mol­ecule in the asymmetric unit. Centrosymmetrically related mol­ecules are linked together by weak C—H?O hydrogen bonds to form dimers which are further linked by yet another pair of centrosymmetrically related C—H?O hydrogen bonds to form a tube which runs parallel to the a axis.  相似文献   

9.
Two new polymorph forms, (Ia) and (Ib), of the title compound, C14H17N3S, and its solvate with aceto­nitrile, C14H17N3S·0.25C2H3N, (Ic), have been investigated. Crystals of the two polymorphs were grown from different solvents, viz. ethanol and N,N‐di­methyl­form­amide, respectively. The polymorphs have different orientations of the thio­amide group relative to the CN substituent, with s‐cis and s‐trans geometry of the C=C—C=S diene fragment, respectively. Compound (Ic) contains two independent mol­ecules, A and B, with s‐cis geometry, and the solvate mol­ecule lies on a twofold axis. The core of each mol­ecule is slightly non‐planar; the dihedral angles between the conjugated C=C—CN linkage and the phenyl ring, and between this linkage and the thio­amide group are 13.4 (2) and 12.0 (2)° in (Ia), 14.0 (2) and 18.2 (2)° in (Ib), 2.3 (3) and 12.7 (4)° in molecule A of (Ic), and 23.2 (3) and 8.1 (4)° in molecule B of (Ic). As a result of strong conjugation between donor and acceptor parts, the substituted phenyl rings have noticeable quinoid character. In (Ib), there exists a very strong intramolecular steric interaction (H⋯H = 1.95 Å) between the bridging and thio­amide parts of the mol­ecule, which makes such a form less stable. In the crystal structure of (Ia), intermolecular N—H⋯N and N—H⋯S hydrogen bonds link mol­ecules into infinite tapes along the [10] direction. In (Ib), such intermolecular hydrogen bonds link mol­ecules into infinite (101) planes. In (Ic), intermolecular N—H⋯N hydrogen bonds link mol­ecules A and B into dimers, which are connected via N—H⋯S hydrogen bonds and form infinite chains along the c direction.  相似文献   

10.
The title compound, N‐(5‐chloro‐2‐oxido­benzyl­idene)‐2‐hydroxy‐5‐methyl­anilinium, C14H12ClNO2, is a tridentate Schiff base with almost planar molecules. Each mol­ecule contains a strong intramolecular N—H?O hydrogen bond [2.576 (2) Å]. There is also an intermolecular O—H?O hydrogen bond [2.695 (2) Å] linking neighbouring mol­ecules into infinite chains along the [101] direction.  相似文献   

11.
In the crystal structure of the title compound, 4‐cyano‐N‐(4‐methoxy­benzyl­idene)­phenyl­amine N‐oxide, C15H12N2O2, the 4‐methoxy­phenyl is approximately coplanar with the nitrone moiety but significantly rotated with respect to the 4‐cyano­phenyl moiety. The extent of this rotation is significantly different for the two crystallographically independent mol­ecules of the asymmetric unit [dihedral angles of 19.4 (1) and 26.5 (1)°]. The geometry about the C=N bond is Z. The two mol­ecules are related to one another by a pseudo inversion centre.  相似文献   

12.
The structures of the three title isomers, namely 4‐(2‐methyl­anilino)pyridine‐3‐sulfonamide, (I), 4‐(3‐methyl­anilino)pyridine‐3‐sulfonamide, (II), and 4‐(4‐methyl­anilino)pyridine‐3‐sulfonamide, (III), all C12H13N3O2S, differ in their hydrogen‐bonding arrangements. In all three mol­ecules, the conformation of the 4‐amino­pyridine‐3‐sulfon­amide moiety is conserved by an intra­molecular N—H⋯O hydrogen bond and a C—H⋯O inter­action. In the supra­mol­ecular structures of all three isomers, similar C(6) chains are formed via inter­molecular N—H⋯N hydrogen bonds. N—H⋯O hydrogen bonds lead to C(4) chains in (I), and to R22(8) centrosymmetric dimers in (II) and (III). In each isomer, the overall effect of all hydrogen bonds is to form layer structures.  相似文献   

13.
The crystal structure of the title compound, [Ni(NCS)2(C4H12N2O)2], has two crystallographically independent half‐mol­ecules in the asymmetric unit, with each Ni atom residing on a centre of symmetry. The two mol­ecules exhibit similar coordination geometry but display differences with regard to other structural features. Each NiII centre is octahedrally coordinated by two mutually trans chelating hydroxy­ethyl­ethyl­ene­di­amine ligands and two mutually trans iso­thio­cyanate ions. The two independent mol­ecules form chains through different types of non‐covalent interactions. In the case of one of the mol­ecules, only NCS and free OH groups participate in hydrogen bonding, while in the chain based on the second mol­ecule, the NCS, NH, NH2 and free OH groups are involved in intermolecular hydrogen bonding. The two chains interact with one another through hydrogen bonding, forming planar sheets. The third packing direction is mediated only by van der Waals interactions.  相似文献   

14.
The title complex, bis­[3,3′‐(pyridine‐4‐imino‐κN1)­di­propane­nitrile]silver(I) perchlorate, [Ag(CEAP)2]ClO4 {CEAP is 4‐[N,N‐bis(2‐cyano­ethyl)­amino]­pyridine, C11H12N4}, has been prepared and characterized. The unit cell consists of two crystallographically non‐equivalent mol­ecules. Cation cavities are constructed by [Ag(CEAP)2]+ cations through hydrogen bonds, and the ClO4 anions are incorporated into the cavities in μ4‐ and μ2‐ClO4 bridging modes through C—H⃛O hydrogen bonds.  相似文献   

15.
The structure of the cocrystallized 1:1 adduct of (S,S)‐4‐amino‐3,5‐bis­(1‐hydroxy­ethyl)‐1,2,4‐triazole and (S,S)‐1,2‐bis­(2‐hydroxy­propionyl)­hydrazine, C6H12N4O2·C6H12N2O4, has tetra­gonal symmetry. All eight O‐ and N‐bound H atoms are involved in inter­molecular hydrogen bonds, resulting in infinite zigzag chains of the triazole mol­ecules, with the hydrazine mol­ecules filling the gaps between the chains and completing a three‐dimensional hydrogen‐bonded array.  相似文献   

16.
The geometries of the thia­zole ring and the nitr­amino groups in N‐(3H‐thia­zol‐2‐yl­idene)­nitr­amine, C3H3N3O2S, (I), and N‐­methyl‐N‐(thia­zol‐2‐yl)­nitr­amine, C4H5N3O2S, (II), are very similar. The nitr­amine group in (II) is planar and twisted along the C—N bond with respect to the thia­zole ring. In both structures, the asymmetric unit includes two practically equal mol­ecules. In (I), the mol­ecules are arranged in layers connected to each other by N—H⋯N and much weaker C—H⋯O hydrogen bonds. In the crystal structure of (II), the mol­ecules are arranged in layers bound to each other by both weak C—H⋯O hydrogen bonds and S⋯O dipolar interactions.  相似文献   

17.
The title compound, [Ni(C2H8N2)3][Ni(C3HN3O2)2]·H2O, appears to be a modular associate consisting of two complex counter‐ions, containing bivalent nickel as the central atom in both cases, and a solvent water mol­ecule. The NiII ion in the complex cation lies on the C2 crystallographic axis. Its coordination environment is formed by six N atoms of three ethyl­ene­diamine (en) mol­ecules, representing a distorted octa­hedral geometry. The NiII ion in the complex anion occupies a position at the center of inversion. It exhibits a distorted square‐planar coordination geometry formed by four N atoms belonging to the deprotonated oxidoimine and amide groups of the two doubly charged 2‐cyano‐2‐(oxidoimino)acetamidate anions, situated in trans positions with respect to each other. In the crystal packing, the complex anions are linked by water mol­ecules via hydrogen bonds between the amide O atoms and water H atoms, forming chains translated along the a direction. The [Ni(en)3]2+ cations fill empty spaces between the translational chains, connecting them by hydrogen bonds between the oxime and amide O atoms of the anions and the amine H atoms of the cations, forming layers along the ac plane. The water mol­ecules provide connection between layers through N atoms of the cations, thus forming a three‐dimensional modular structure.  相似文献   

18.
In tris(4‐hydroxy­phenyl)­methane (or 4,4′,4′′‐methane­triyl­tri­phenol), C19H16O3, mol­ecules are connected by O—H⃛O hydrogen bonds [O⃛O = 2.662 (2) and 2.648 (2) Å] into two‐dimensional square networks that are twofold interpenetrated. In tris(4‐hydroxy­phenyl)­methane–4,4′‐bi­pyridine (1/1), C19H16O3·C10H8N2, trisphenol mol­ecules form rectangular networks via O—H⃛O [O⃛O = 2.694 (3) Å] and C—H⃛O [C⃛O = 3.384 (3) Å] hydrogen bonds. Bi­pyridine mol­ecules hydrogen bonded to phenol moieties [O⃛N = 2.622 (3) and 2.764 (3) Å] fill the voids to complete the structure.  相似文献   

19.
In the title complex, trans‐{2,2′‐[cyclo­hexane‐1,2‐diyl­bis­(ni­t­rilo­methyl­idyne)]­di­phenol­ato‐κ4O,N,N′,O′}­nickel(II)–chloro­form (1/1), [Ni(C20H20N2O2)]·CHCl3, the Ni atom has a square‐planar geometry, slightly tetrahedrally distorted. The Ni—N and Ni—O bonding distances are within the expected ranges for Ni–Schiff base derivatives. The di­imine bridge has a gauche conformation with the cyclo­hexyl ring almost coplanar with the NiN2O2 plane. The complex mol­ecules pack in dimers with an Ni?Ni distance of 3.59 (1) Å and form a three‐dimensional structure displaying a herring‐bone configuration. Channels are occupied by solvent mol­ecules, which are involved in C—H?O hydrogen bonds with the ligand O atoms.  相似文献   

20.
In the title compound, {[Zn(C10H8N2)(H2O)4](C6H5O4S)2·3H2O}n, the Zn atom, the bipyridine ligand and one of water mol­ecules are located on twofold rotation axes. The Zn atom is coordinated by four O atoms from four water mol­ecules and two N atoms from two 4,4′‐bipyridine mol­ecules in a distorted octa­hedral geometry. The Zn2+ ions are linked by the 4,4′‐bipyridine mol­ecules to form a one‐dimensional straight chain propagating along the c axis. The 4‐hydroxy­benzene­sulfonate counter‐ions are bridged by the solvent water mol­ecules through hydrogen bonds to generate a two‐dimensional layer featuring large pores. In the crystal packing, the intra­layer pores form one‐dimensional channels along the c axis, in which the one‐dimensional [Zn(C10H8N2)(H2O)4]2+ chains are encapsulated. Electrostatic inter­actions between cations and anions and extensive hydrogen bonds result in a three‐dimensional supra­molecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号