首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, C20H10N4S, and its dipyridinium salt, 4,4′‐(2,1,3‐benzo­diazol‐4,7‐diyl­diethynyl)­dipyridinium diperchlorate, C20H12N4S2+·2ClO4?, display bond alternation in the 2,1,3‐benzo­thia­diazo­le rings, which suggests their quinonoid character. The dipyridinium dication mol­ecules stack along the a axis and form a dimer with short S?N interheteroatom contacts [3.146 (4) Å] between the two 1,2,5‐thia­diazo­le rings. The dimer is surrounded by the perchlorate anions with which it forms a large number of intermolecular N—H?O and C—H?O hydrogen bonds.  相似文献   

2.
In strychninium 4‐chloro­benzoate, C21H23N2O2+·C7H4ClO2, (I), and strychninium 4‐nitro­benzoate, C21H23N2O2+·C7H4NO4, (II), the strychninium cations form pillars stabilized by C—H⋯O and C—H⋯π hydrogen bonds. Channels between the pillars are occupied by anions linked to one another by C—H⋯π hydrogen bonds. The cations and anions are linked by ionic N—H+⋯O and C—H⋯X hydrogen bonds, where X = O, π and Cl in (I), and O and π in (II).  相似文献   

3.
In the title compound, C6H10N3+·HSO4, the asymmetric unit consists of a hydrogen sulfate anion and a 2‐amino‐4,6‐di­methyl­pyrimidinium cation. The hydrogen sulfate anions self‐assemble through O—H⋯O hydrogen bonds, forming supramolecular chains along the b axis, while the organic cations form base pairs via N—H⋯N hydrogen bonds. The amino­pyrimidinium cations join to the sulfate anions via a pair of hydrogen bonds donated from the pyrimidinium protonation site and from the exo amine group cis to the protonated site.  相似文献   

4.
The crystal structures of the title compounds, (S)‐1‐carboxy‐3‐(methyl­sulfanyl)­propanaminium chloride, C5H12NO2S+·Cl, and (S)‐1‐carboxy‐3‐(methyl­selanyl)­propanaminium chloride, C5H12NO2Se+·Cl, are isomorphous. The proton­ated l ‐methionine and l ‐seleno­methionine mol­ecules have almost identical conformations and create very similar contacts with the Cl anions in the crystal structures of both compounds. The amino acid cations and the Cl anions are linked viaN—H⋯Cl and O—H⋯Cl hydrogen bonds.  相似文献   

5.
In the crystal structure of the title dopamine­rgic compound, C16H24NO2+·Br·H2O, protonation occurs at the piperidine N atom. The piperidine ring adopts a chair conformation and the cyclo­hexene ring adopts a half‐chair conformation; together with the planar benzene ring, this results in a relatively planar shape for the whole mol­ecule. Classical hydrogen bonds (N—H⋯Br, O—H⋯Br and O—H⋯O) produce an infinite three‐dimensional network. Hydrogen bonds between water ­mol­ecules and Br anions create centrosymmetric rings throughout the crystal structure. Structural comparison of the mol­ecule with the ergoline dopamine agonist pergolide shows that it is the hydrogen‐bond‐forming hydr­oxy or imino group that is necessary for dopamine­rgic activity, rather than the presence of a phenyl or a pyrrole ring per se.  相似文献   

6.
In the title compound 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐piperidone, C22H23NO3, (I), the central heterocyclic ring adopts a flattened boat conformation, while in the related salt 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐oxopiperidin­ium chloride, C22H24NO3+·Cl, (II), the ring exhibits a `sofa' conformation in which the N atom deviates from the planar fragment. The pendant benzene rings are twisted from the heterocyclic ring planes in both mol­ecules in the same direction, the range of dihedral angles between the ring planes being 24.5 (2)–32.7 (2)°. The dominant packing motif in (I) involves centrosymmetric dimers bound by weak intermolecular C—H⋯O hydrogen bonds. In (II), cations and anions are linked by strong N—H⋯Cl hydrogen bonds, while weak C—H⋯O and C—H⋯Cl hydrogen bonds link the cations and anions into a three‐dimensional framework.  相似文献   

7.
In the title hydrated adduct, 1,4,10,13‐tetraoxa‐7,16‐diazo­nia­cyclo­octa­decane bis(4‐amino­benzene­sulfonate) dihydrate, C12H28N2O42+·2C6H6NO3S·2H2O, formed between 7,16‐di­aza‐18‐crown‐6 and the dihydrate of 4‐amino­benzene­sulfonic acid, the macrocyclic cations lie across centres of inversion in the orthorhombic space group Pbca. The anions alone form zigzag chains, and the cations and anions together form sheets that are linked via water mol­ecules and anions to form a three‐dimensional grid.  相似文献   

8.
In the title compound, [CuCl2(C9H12N2O)], the CuII atom is coordinated by two Cl anions and two N atoms of one O‐ethyl 3‐methyl­pyridine‐2‐carboximidic acid mol­ecule in a slightly distorted square‐planar geometry, with Cu—N distances of 2.0483 (17) and 1.9404 (18) Å, and Cu—Cl distances of 2.2805 (10) and 2.2275 (14) Å. In addition, each CuII atom is connected by one Cl anion and the CuII atom from a neighbouring mol­ecule, with Cu⋯Cl and Cu⋯Cu distances of 2.9098 (13) and 3.4022 (12) Å, respectively, and, therefore, a centrosymmetric dimer is formed. Adjacent mol­ecular dimers are connected by π–π stacking inter­actions between pyridine rings to form a zigzag mol­ecular chain. The mol­ecular chains are also enforced by N—H⋯Cl and C—H⋯Cl inter­actions.  相似文献   

9.
In the title polymeric complex, [Mn(C7H5O3)2(C12H8N2)]n, the MnII atom is located on a twofold axis and displays a distorted octa­hedral coordination geometry, formed by four salicylate anions and one 1,10‐phenanthroline (phen) mol­ecule. The salicylate anions doubly bridge the MnII atoms to form one‐dimensional polymeric chains. A comparison of Mn—O bond distances with the corresponding Mn—O—C angles suggests a significant electrostatic content in the Mn—O bonds. A face‐to‐face distance of 3.352 (7) Å between neighbouring parallel phen planes indicates π–π stacking inter­actions between polymeric chains.  相似文献   

10.
In the title compound, C15H13N2+·C24H20B, the pyridyl ring of the cation makes a dihedral angle of 1.6° with the benzene ring. Each is rotated in the same direction with respect to the central –C—CH=CH—C– linkage, by 3.8 and 5.3°, respectively. The anions have a slightly distorted tetra­hedral geometry. Mol­ecular packing analysis was carried out using the packing energy portioning scheme in the program OPEC. Around each anion in the crystal structure there are eight anions, which inter­act with the central anion through C—H⋯π inter­actions. The cations are hydrogen bonded in a head‐to‐tail fashion, forming chains along [10].  相似文献   

11.
The crystal structures of the two title (E)‐stilbazolium halogenates, C20H17ClNO+·Cl and C20H17BrNO+·Br, are isomorphous, with an isostructurality index of 0.985. The azastyryl fragments are almost planar, with dihedral angles between the benzene and pyridine rings of ca 4.5°. The rings of the benzyl groups are, in turn, almost perpendicular to the azastyryl planes, with dihedral angles larger than 80°. The cations and anions are connected by O—H...X (X = halogen) hydrogen bonds. The halide anions are `sandwiched' between the charged pyridinium rings of neighbouring molecules, and weak C—H...O hydrogen bonds and C—H...X and C—H...π interactions also contribute to the crystal structures.  相似文献   

12.
In the title compounds, C7H8NO2+·NO3, (I), C7H8NO2+·ClO4·H2O, (II), and 2C7H8NO2+·SO42−, (III), the carboxyl planes of the 4‐carboxy­phenyl­ammonium cations are twisted from the aromatic plane. A homonuclear C(8) hydrogen‐bonding motif of 4‐carboxy­phenyl­ammonium cations is observed in both (I) and (II), leading to `head‐to‐tail' layers. The cations in (III) form carboxyl group dimers, making a graph‐set motif of R22(8). In all the structures, anions connect the cationic layers and an infinite chain running along the c axis is observed, having the C22(6) graph‐set motif. Inter­estingly, in (II), the anions are connected through weak hydrogen bonds involving the water mol­ecules, leading to a graph‐set motif of R44(12). Alternate hydro­phobic and hydro­philic layers are observed in all three compounds as a result of the column‐like arrangement of the aromatic rings of the cations and the anions. Furthermore, in (I), head‐to‐tail N—H⋯O inter­actions and inter­actions linking the cations and anions form an R64(16) hydrogen‐bonding motif, resulting in a pseudo‐inversion centre at (, , 0).  相似文献   

13.
The crystal structure of the title compound, tetra­chloro­[μ‐1,1,4,7,7‐pentakis(1H‐benzimidazol‐2‐yl­methyl)‐1,4,7‐tri­azaheptane]­dimanganese(II) methanol pentasolvate tetrahydrate, [Mn2Cl4(C44H43N13)]·5CH4O·4H2O, contains an ­asymmetric dinuclear MnII–DTPB [DTPB is 1,1,4,7,7‐pentakis(1H‐benzimidazol‐2‐yl­methyl)‐1,4,7‐tri­aza­heptane] complex with an intra‐ligand bridging group (–NCH2CH2N–), as well as several solvate mol­ecules (methanol and water). Both MnII cations have similar distorted octahedral coordination geometries. One MnII cation is coordinated by a Cl anion and five N atoms from the ligand, and the other is coordinated by three Cl anions and three N atoms of the same ligand. The Mn⋯Mn distance is 7.94 Å. A Cl⋯H—O⋯H—O⋯H—N hydrogen‐bond chain is also observed, connecting the two parts of the complex.  相似文献   

14.
In the asymmetric unit of the title compound, C10H15N4O2+·H2PO4, there are two protonated amino­guanidinium cations and two dihydrogenphosphate anions. The positive charge on the protonated amidine group is delocalized over the three C—N bonds in a manner similar to that found in guanidinium salts. The amino­guanidinium cations are found to be the E‐isomer structures. Intra­molecular inter­actions of the N—H⋯N type are observed, leading to the formation of five‐membered rings. Extensive networks of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds stabilize the three‐dimensional network. In the crystal structure, π–π inter­actions between the benzene rings, with a distance of 3.778 (2) Å between the ring centroids, also affect the packing of the mol­ecules.  相似文献   

15.
Subject to packing with different anions, the title cation undergoes various conformational changes with significantly different N—C—C—C torsion angles, as well as different angles between the NCN2 guanidine planes. The 2,2‐(propane‐1,3‐di­yl)bis­(1,1,3,3‐tetra­methyl­guanidinium) salts reported here, viz. the dibromide, C13H32N62+·2Br, the tetra­phenyl­borate chloride, C13H32N62+·C24H20B·Cl, the tetra­chloro­mercurate, (C13H32N6)[HgCl4], and the bis­(trifluoro­methanesulfonate), C13H32N62+·2CF3SO3, are dominated by strong inter­molecular N—H⋯X hydrogen bonds, which form different packing patterns.  相似文献   

16.
The title compound, C10H16N·Cl·C2H6O, is an important intermediate in the convergent synthesis of amidine‐substituted polycyclic heterocycles, a class of compounds that shows significant anticancer activity. The molecule of (I) is not planar, having a dihedral angle of 25.00 (7)° between the aniline and amidine (–C—NH=C=NH2) groups. The proton­ation of the amidine molecular fragment is accompanied by delocalized C—N bond distances of 1.320 (2) and 1.317 (2) Å. The cations and chloride anions are involved in a network of hydrogen bonds, resulting in the formation of infinite chains propagating along the b direction. The chains are further grouped within the ab plane, in such a way that the structure is segregated into layers dominated by hydro­phobic interactions involving N‐isopropyl residues and layers dominated by N—H⋯Cl [N⋯Cl = 3.275 (2)–3.596 (2) Å], O—H⋯Cl [O⋯Cl = 3.229 (3) Å] and N—H⋯O [N⋯O = 2.965 (3) Å] hydrogen bonds.  相似文献   

17.
In the crystal structure of the title salt, C7H7Cl2N2O2+·Cl, the chloride anions participate in extensive hydrogen bonding with the aminium cations and indirectly link the mol­ecules through multiple N+—H⋯Cl salt bridges. There are two independent mol­ecules in the asymmetric unit, related by a pseudo‐inversion center. The direct inter­molecular coupling is established by C—H⋯O, C—H⋯Cl and C—Cl⋯Cl inter­actions. A rare three‐center (donor bifurcated) C—H⋯(O,O) hydrogen bond is observed between the methyl­ene and nitro groups, with a side‐on intra­molecular component of closed‐ring type and a head‐on inter­molecular component.  相似文献   

18.
The asymmetric unit of the title compound, [Zn(C7H5O3)2(C10H8N2)], contains one monomeric zinc complex. The Zn atom is coordinated to one 2,2′‐bipyridyl ligand via both N atoms and to two salicyl­ate anions (Hsal) in a bidentate chelating manner involving carboxyl­ate O‐atom coordination. The complex exhibits a distorted octahedral geometry about the ZnII atom, with the `apical' positions occupied by one of the two N atoms of the bipyridyl ligand and an O atom from one Hsal ligand; the Zn atom is 0.168 (1) Å out of the `basal' plane. Two intramolecular six‐membered hydrogen‐bonded rings are present, generated from interactions between the carboxyl and hydroxyl groups of the salicyl­ate ligands. The crystal packing is governed by weak C—H⋯O and C—H⋯π interactions.  相似文献   

19.
In the title compound, [Cd(C2H8N2)2(H2O)2](C10H8NO3S)2·2H2O, the CdII atom, located on an inversion centre, has a distorted octa­hedral coordination geometry formed by two ethyl­ene­diamine and two water mol­ecules. 4‐Amino­naphthalene‐1‐sulfonate acts as a counter‐ion to balance the charge, and two anti­parallel anions showing strong π–π stacking inter­actions are linked by paired N—H⋯O(sulfonate) hydrogen bonds into an isolated R22(16) dimer. The crystal structure is stabilized by the π–π stacking inter­­actions and hydrogen bonds.  相似文献   

20.
The crystal structure of the title potassium salt, K+·C8HN4O2, of the organic anion 3‐cyano‐4‐(di­cyano­methyl­ene)‐5‐oxo‐4,5‐di­hydro‐1H‐pyrrol‐2‐olate shows that the di­cyano­methyl­ene moiety is able to accept an electron in the same way as does tetra­cyano­ethyl­ene, to yield the novel product. The organic anion is nearly planar, with deviations caused by steric crowding among the exocyclic cyano groups. The K+ cations lie within tricapped trigonal prisms that stack to form channels. The three‐dimensional structure is completed by the formation of hydrogen‐bonded chains by the anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号