首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bulky hydrazine t-BuN(H)NMe2 was synthesized via hydrazone and t-BuN(H)N(H)Me intermediates as the major component in a 90:5:5 mixture consisting of t-BuN(H)NMe2, t-BuN(Me)N(H)Me, and t-BuN(Me)NMe2. Reacting the mixture with n-BuLi followed by distillation and fractional crystallization led to the isolation of the ligand precursor LiN(t-Bu)NMe2. Lithium hydrazides, LiN(R)NMe2, were reacted with metal chlorides to afford the hydrazide complexes M(N(Et)NMe2)4 (M = Zr or Hf), MCl(N(R)NMe2)3 (M = Zr, R = i-Pr or t-Bu; M = Hf, R = t-Bu), and TaCl3(N(i-Pr)NMe2)2. The X-ray crystal structures of [LiN(i-Pr)NMe2]4, [LiN(t-Bu)NMe2.THF]2, ZrCl(N(R)NMe2)3 (R = i-Pr or t-Bu), and TaCl3(N(i-Pr)NMe2)2 were determined. The structural analyses revealed that the hydrazide ligands in ZrCl(N(R)NMe2)3 (R = i-Pr or t-Bu) and TaCl3(N(i-Pr)NMe2)2 are eta2 coordinated.  相似文献   

2.
A systematic X-ray diffraction study of the interaction products of Zr(IV), Hf(IV), Nb(V), and Ta(V) oxides (fluorides) with crown-ethers (CEs) in aqueous solutions of hydrofluoric acid is performed. It is shown that oxygen-containing CEs form oxonium complexes with [NbF6]s- and [TaF6]s- hexafluorometallate anions. In two systems, [cis-syn-cis-DCH18C6-H3O][TaF6] and [B18C6·H3O][TaF6], the phenomenon of supramolecular isomerism is found, which is caused by a change in the conformation of the macrocycle or by a partial redistribution of intermolecular hydrogen bonds. The use of aza-crown ethers as extractants made it possible to extract unique hydrolytically unstable anions, the products of incomplete fluorine substitution for oxygen atoms in the starting oxides in the form of crystalline complexes with a composition of [(HA15C5)2][Ta2F10O] and [(HA18C6·H2O)(A18C6·H2O)] [(H2O)Nb2F9O]. In [(18C6)(H7O3)2×(Hf2F10·2H2O)], [(HA18C6)(M2F10·2H2O)·(H3O)·H2O], and [(H2DA18C6) (M2F10·2H2O)·2H2O] (M=Zr, Hf) complexes, the metals are extracted in the form of identical (M2F10·2H2O)2s- anions with a similar topology. The performed study demonstrates that macrocyclic complexones are undoubtedly promising to extract Zr(IV), Hf(IV), Nb(V), and Ta(V) from fluorine-containing aqueous solutions.  相似文献   

3.
Salicylhydroxamic acid can be used for the separation of zirconium from niobium above pH 2 5 in presence of hydrogen peroxide. Niobium can be precipitated from the filtrate with N-benzoyl-N-phenylhydroxylamine.  相似文献   

4.
The coordination chemistry of the hydrazine derivatives dimethylhydrazine (Hdmh) and N-trimethylsilyl-N'N'-dimethylhydrazine (Htdmh) at Ta, Zr and Hf was investigated aiming at volatile mixed ligand all-nitrogen coordinated compounds. The hydrazido ligands were introduced either by salt metathesis employing the Li salts of the hydrazines and the tetrachlorides MCl(4) (M = Zr, Hf) or by amine substitution using M(NR(2))(4) (R = Me, Et) and [(t-BuN)Ta(NR(2))(3)]. The new complexes were fully characterised including (1)H/(13)C NMR, mass spectrometry and a study of their thermal behaviour. The crystal structures of [ZrCl(tdmh)(3)] and the all-nitrogen coordinated complex [Ta(N-t-Bu)(NMe(2))(2)(tdmh)] are discussed as well as the structure of the by-product [Li(tdmh)(py)](2). Preliminary MOCVD experiments of the liquid compound [Ta(NEt(2))(2)(N-t-Bu)(tdmh)] were performed and the deposited TaN(Si) films were analysed by RBS and SEM.  相似文献   

5.
Recent developments in the metallurgy of niobium, tantalum and zirconium have necessitated provision of analytical procedures for determining niobium and tantalum in the presence of each other and in the presence of zirconium. For this purpose, absorptioinetric procedures based on the formation of yellow coloured complexes, between pyrogallol and niobium or tantalum, have been critically examined. Direct absorptiometric procedures are described, which are suitable for determining niobium or tantalum in the range 2 to 7%; when either of these metals exceeds 7%, differential absorptiometric procedures are recommended. Corrections must lie made for absorption due to the presence of other metals which form complexes with pyrogallol. In tlie determination of niobium or tantalum up to 5%, the precision of the method is about ±0.05%. About 12 determinations can be made in a day, by one analyst.  相似文献   

6.
A range of 2-arylaminopyridines (HL) are synthesised readily from bromopyridines and amines using palladium-catalysed amination. Protonolysis reactions of these proligands with ZrX(4)(X = NMe(2), CH(2)Ph, CH(2)Bu(t)) yield zirconium complexes of the type [ML(n)X(4-n)], several of which have been characterised by X-ray crystallography. Control of metal/ligand stoichiometry and structure is pursued by investigation of the effects on substitution patterns of the pyridine and aryl rings. Some distinct patterns emerged; (i) the 6-methyl position on the pyridine appears to be particularly important with regards to control of stoichiometry, although there are co-ligand effects; (ii) structures of the metal alkyl derivatives [Zr(n)(CH(2)R)(4-n)] are dominated by aromatic pi-pi stacking, even when bulky arene substituents are employed at. This leads to the complexes adopting a C(2v)-symmetric core; (iii) the amides [Zr(2)(NMe(2))(2)] have structures for which aromatic pi-pi stacking is unfeasible, and correspondingly C(2)-symmetric or similar structures are adopted. All the structural data presented is consistent with a trans influence order at zirconium Me(2)N > RCH(2) > py.  相似文献   

7.
The reactions of tri(bis(ethyl)amino)phosphorus ylide (Et2N)3PCH2 with cyclopentadienyl (Cp) metal (V) tetrachloride CpMCl4 (M = Nb 1; Ta 3) and pentamethylcycopentadienyl (Cp) metal (V) tetrachloride CpMCl4 (M = Nb 2; Ta 4) were investigated. The hexa-coordinate ylide adducts complexes 5 (CpNbCl4(H2CP(NEt2)3)), 6 (CpNbCl4(H2CP(NEt2)3)) and 8 (CpTaCl4(H2CP(NEt2)3)) with pseudo-octahedral geometry were structurally analyzed with X-ray diffraction. Compound 4 (CpTaCl4) reacted with three molar equivalent of phosphorus ylide to form one ionic complex 9 ([H3C-P(NEt2)3][CpTaCl5]) which was also structurally analyzed with X-ray diffraction. The possible formation mechanism of compound 9 has been discussed.  相似文献   

8.
The reactions of Et4NMCl6 and MCl5 (M  Nb, Ta) with 2-methoxyethanol have been studied and complexes MCl3(OCM2CH2OMe)2 and Et4N TaCl5x (OCH2CH2OMe)x (x = 1,2) have been isolated, and characterised by i.r. and NMR spectra. The reactions of Et4NMCl6 with MeOH are also reported.  相似文献   

9.
Zirconium and hafnium tetrachlorides react with NaBH4, in dimethoxyethane (DME) to give [Na(DME)3][M(BH4)5]. These compounds react with Bu4NBH4 and Ph4PBH4 to give (R4E)[M(BH4)5]. Bidentate and tridentate BH 4 occur in [M(BH4)5] according to IR spectroscopy. Data from1H and1H-{11B} NMR spectra are consistent with intermolecular exchange of BH4 ligands in solutions of complexes (I)–(VI). The BH4groups and the bridging and terminal protons in each BH4 group equilibrate rapidly. Heating the complexes (I)–(VI) reduces the central atom, releases diborane, and decomposes the outer-sphere cation. The neutral borohydrides M(BH4)4, can be prepared by thermolysis of the sodium salts (I) and (II).Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1207–1214, June, 1990.  相似文献   

10.
A procedure is presented for the determination of zirconium in the presence of niobium or tantalum. The bulk of the niobium or tantalum is first removed by extracting with hexone from a 10M hyclrofluoric acid, 6M sulphuric acid solution of the sample. The zirconium is then. separated from any unextractcd earth, acid element by precipitation with ammonium hydroxide followed by the addition of hydrogen peroxide. Under these conditions, both the niobium and tantalum form soluble peroxy complexes whereas the zirconium is completely precipitated from solution. After the separation of the precipitate by filtration, it is re-dissolved in hydrochloric acid and the zirconium concentration is finally determined by titration with ethylenediaminetetraacetic acid.  相似文献   

11.
12.
《Polyhedron》1987,6(4):741-757
Reduction of the quadruply-bridged (2Cl, 2H) tantalum(IV) dimer, Ta2Cl6 (PMe3)4H2 (2) with sodium amalgam in glyme or THF at 0°C provides deep green Ta2Cl4(PMe3)4H2 (3) in 70% yield. Dimer 3 has a D2d Ta2Cl4(PMe3)4 substructure which closely resembles that of the quadruply metal-metal-bonded dimer W2Cl4(PMe3)4. The hydride ligands of 3 are located on a diagonal plane, bridging the two tantalum atoms and the Ta-Ta separation is 2.545(1) Å. 3 reacts cleanly with Cl2, HCl and H2 in diethyl ether to provide the quadruply-bridged dimers 2, Ta2Cl5(PMe3)4H3 (4), and Ta2Cl4(PMe3)4H4 (5), respectively, in high yield. Dimer 5 can also be prepared in high yield via thermolysis of the tantalum(IV) hydride TaCl2H2(PMe3)4 (6) in refluxing methylcyclohexane. The X-ray structure of 5 shows that the (μ-H)4 group is staggered by 45° with respect to the eclipsed pyramidal TaCl2(PMe3)2 end groups. The molecular symmetry of 5 is D2d and the Ta-Ta separation is 2.511(2)Å. Multiple-scattering Xα calculations on the model compounds Ta2Cl4(PH3)4H2 and Ta2Cl4(PH3)4 are used to elucidate the ground-state electronic structures of 3 and 5, and to probe the question of (μ-H)x rotation about the metal-metal bonds in these complexes. Crystal data (at 160°C) are as follows: for 3, monoclinic space group C2/c, a = 18.371(5) Å, b = 9.520(3) Å, c = 18.942(6) Å, β = 125.36(2)°, V = 2701.8 Å3, Z = 4,dcalc. = 1.991 g cm−3; for 5, tetragonal space group P4/nbm, a = b = 12.579(2) Å, c = 10.205(2) Å, V = 1614.7 Å3, Z = 2, dcalc. = 1.670 g cm−3.  相似文献   

13.
Lehn JS  Hoffman DM 《Inorganic chemistry》2002,41(15):4063-4067
Zirconium amide-iodide complexes were synthesized for possible use as chemical vapor deposition precursors to zirconium nitride films. The series of six complexes Zr(NR(2))(4-n)I(n)(R = Me or Et; n = 1-3) was prepared by reacting ZrI(4) and Zr(NR(2))(4) in hot toluene. X-ray crystallographic analyses were performed for Zr(NMe(2))(3)I, Zr(NEt(2))(2)I(2), and Zr(NEt(2))I(3). In the solid state, Zr(NMe(2))(3)I and Zr(NEt(2))(2)I(2) are the discrete dimers [Zr(NMe(2))(2)I(mu-NMe(2))](2) and [Zr(NEt(2))(2)I(mu-I)](2), and Zr(NEt(2))I(3) is the polymer of dimers ([Zr(NEt(2))I(2)(mu-I)](2))(n). In solution, Zr(NEt(2))(3)I is proposed to be monomeric on the basis of NMR data and a molecular weight determination. The complex Zr(NEt(2))(3)I is the most promising precursor candidate because of its physical properties.  相似文献   

14.
15.
A series of titanium and zirconium complexes based on aminoiminophosphorane ligands [Ph2P(Nt‐Bu)(NR)]2MCl2 ( 4 , M = Ti, R = Ph; 5 , M = Zr, R = Ph; 6 , M = Ti, R = SiMe3; 7 , M = Zr, R = SiMe3) have been synthesized by the reaction of the ligands with TiCl4 and ZrCl4. The structure of complex 4 has been determined by X‐ray crystallography. The observed very weak interaction between Ti and P suggests partial π‐electron delocalization through both Ti and P. The complexes 4–7 are inactive for ethylene polymerization in the presence of modified methylaluminoxane (MMAO) or i‐Bu3Al–Ph3CB(C6F5)4 under atmospheric pressure, and is probably the result of low monomer ethylene concentration and steric congestion around the central metal. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Summary Complexes of pentachlorotantalum with the Schiff bases: bis(vanillin)benzidine, bis(vanillin)-o-dianisidine, bis(acetylacetone)benzidine, bis(p-dimethylaminobenzaldehyde)-o-dianisidine, bis(anisaldehyde)-1, 3-propanediamine and bis(p-dimethylaminobenzaldehyde)-o-phenylenediamine have been prepared and characterized by molar conductance, decomposition temperature, elemental and t.g. analyses and i.r. spectral measurements. The conductances reveal that pentachlorotantalum (1 mole) interacts with all the ligands (1 mole), all five chloride ions thus forming simple adducts. A comparative study of the i.r. spectra of the parent ligands and their complexes allows the coordination sites to be ascertained. The studies show that tantalum(V) chloride prefers to form complexes of high coordination number.  相似文献   

17.
18.
The trisubstituted methyl-phenyl-silyl-cyclopentadienes [Me-Ph-C5H3(SiMe2X)] (X = Me, Cl, NHt-Bu) and [(Me-Ph-C5H3)2SiMe2] and the lithium salts Li2[Me-Ph-C5H2(SiMe2Nt-Bu)] and Li2[(Me-Ph-C5H2)2SiMe2] have been isolated by conventional methods and characterized by NMR spectroscopy. Desilylation of [Me-Ph-C5H3(SiMe3)] with ZrCl4(SMe2)2 gave the monocyclopentadienyl complex [Zr(η5-1-Ph-3-Me-C5H3)Cl3]. The ansa-metallocene [Zr{(η5-2-Me-4-Ph-C5H2)SiMe25-2-Ph-4-Me-C5H2)}Cl2] was obtained from the mixture of isomers formed by transmetallation of Li2[(Me-Ph-C5H2)2SiMe2] to ZrCl4 and characterized as the meso-diastereomer by X-ray diffraction methods. Similar transmetallation of Li2[Me-Ph-C5H2(SiMe2Nt-Bu)] gave the silyl-η-amido complex [Zr{η5-2-Me-4-Ph-C5H2(SiMe2-η-Nt-Bu)}Cl2] that was further alkylated to give [Zr{η5-2-Me-4-Ph-C5H2(SiMe2-η-Nt-Bu)}R2] (R = Me, CH2Ph) and used as a catalyst precursor, activated with MAO, for ethene and propene polymerization. All of the new compounds were characterized by elemental analysis and NMR spectroscopy.  相似文献   

19.
20.
The preparation and thermal decomposition of several trifluoroacetatozirconium chlorides is described. A mechanism for the thermal decomposition is proposed and the formation of zirconium tetrafluoride discussed in terms of composition of the parent compound.
Zusammenfassung Es wurde die thermische Zersetzung und die Darstellung einiger Trifluoroazetatozirkoniumchloride beschrieben. Für die Zersetzungsreaktion wurde ein Mechanismus vorgeschlagen und die Bildung von Zirkoniumtetrachlorid unter den Gesichtspunkten der Zersetzung der Mutterverbindung erläutert.

. , .


One of us (CMS) wishes to thank the SERC, England, for a maintenance award.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号