首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compound, K–GaSi–GIS, potassium gallium silicon oxide hydrate, was synthesized hydro­thermally and its crystal structure was determined from data collected on a single crystal of dimensions 10 × 10 × 8 µm at a synchrotron X‐ray source. The compound, which has the aluminosilicate (AlSi) zeolite gismondine (GIS) topology, Ca4[Al8Si8O32]·16H2O, crystallizes in the tetragonal space group I41/a. A disordered distribution of the framework Si/Ga sites leads to higher symmetry of the GIS‐type network compared with the usual monoclinic symmetry in AlSi–GIS. Framework Ga substitution for Al in AlSi–GIS leads to substantial distortion of the crankshaft chains, reducing the effective pore dimensions and suggesting the possibility of pore‐dimension control via partial framework‐cation substitution.  相似文献   

2.
On the Coordination of Al in the Calcium Aluminate Hydrates 2 CaO · Al2O3 · 8 H2O and CaO · Al2O3 · 10 H2O By investigations with high-resolution 27Al-NMR in solids it is shown that in the compound 2 CaO · Al2O3 · 8 H2O the Al merely exist in octahedral coordination. According to this and considering its structural relationship with 4 CaO · Al2O3 · 19 H2O the dicalcium aluminate hydrate is proposed to be formulated as [Ca2Al(OH)6][Al(OH)3 (H2O)3]OH. Likewise for the compound CaO · Al2O3 · 10 H2O the octahedral coordination of the Al is proved by 27Al-NMR. This result corresponds with literature according to which a constitution as cyclohexaaluminate Ca3[Al6(OH)24] · 18 H2O is proposed.  相似文献   

3.
In the course of investigations relating to magnesia oxysulfate cement the basic magnesium salt hydrate 3Mg(OH)2 · MgSO4 · 8H2O (3–1–8 phase) was found as a metastable phase in the system Mg(OH)2‐MgSO4‐H2O at room temperature (the 5–1–2 phase is the stable phase) and was characterized by thermal analysis, Raman spectroscopy, and X‐ray powder diffraction. The complex crystal structure of the 3–1–8 phase was determined from high resolution laboratory X‐ray powder diffraction data [space group C2/c, Z = 4, a = 7.8956(1) Å, b = 9.8302(2) Å, c = 20.1769(2) Å, β = 96.2147(16)°, and V = 1556.84(4) Å3]. In the crystal structure of the 3–1–8 phase, parallel double chains of edge‐linked distorted Mg(OH2)2(OH)4 octahedra run along [–110] and [110] direction forming a pattern of crossed rods. Isolated SO4 tetrahedra and interstitial water molecules separate the stacks of parallel double chains.  相似文献   

4.
The crystal structures of the α‐alums rubidium chromium bis(­sulfate) dodecahydrate, RbCr(SO4)2·12H2O, and caesium chromium bis[tetraoxoselenate(VI)] dodecahydrate, CsCr(SeO4)2·12H2O, have been determined by X‐ray diffraction at 293 and 12 K. The metal atoms lie on sites and the anions lie on threefold rotation axes. The accurate and extensive data sets lead to much more precise determinations than are available from earlier work, particularly at 12 K. The changes in the atomic displacement parameters between 293 and 12 K correspond to the respective predominances of intermolecular and intramolecular vibrational effects.  相似文献   

5.
The two title compounds, potassium diaquacobalt(II) borodiphosphate 0.48‐hydrate and potassium–calcium(0.172/0.418) diaquacobalt(II) borodiphosphate monohydrate, were synthesized hydrothermally. They are new members of the borophosphate family characterized by [BP2O8]3− helices running along [001] and constructed of boron (Wyckoff position 6b, twofold axis) and phosphorus tetrahedra. The [CoBP2O8] anionic frameworks in the two materials are structurally similar and result from a connection in the ab plane between the CoO4(H2O)2 coordination octahedra (6b position) and the helical ribbons. Nevertheless, the two structures differ in the disorder schemes of the K,Ca and H2O species. The alkali cations in the structure of the pure potassium compound are disordered over three independent positions, one of them located on a 6b site. Its framework is characterized by double occupation of the tunnels by water molecules located on twofold rotation axes (6b) and a fraction of alkali cations; its cell parameters, compared with those for the mixed K,Ca compound, show abnormal changes, presumably due to the disorder. For the K,Ca compound, the K and Ca cations are on twofold axes (6b) and the channels are occupied only by disordered solvent water molecules. This shows that it is possible, due to the flexibility of the helices, to replace the alkali and alkaline earth cations while retaining the crystal framework.  相似文献   

6.
IntroductionMononuclear ,dinuclearandpolymerictypesofcrys talstructuresforlanthanidecomplexeswithbenzoicacidanditsderivativeshavebeenobtainedbecauseofthevari ationofbridgingformsforcarboxylategroupandcoordina tionabilityofdiammineligands ,suchas 1,10 phena…  相似文献   

7.
Rubidium chromium(III) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­chromium(III)­rubidium(I)], [RbCr(C2O4)2(H2O)2], (I), and dicaesium magnesium dioxalate tetrahydrate [tetra­aqua­bis(μ‐oxalato)­magnesium(II)­dicaesium(I)], [Cs2Mg(C2­O4)2(H2O)4], (II), have layered structures which are new among double‐metal oxalates. In (I), the Rb and Cr atoms lie on sites with imposed 2/m symmetry and the unique water molecule lies on a mirror plane; in (II), the Mg atom lies on a twofold axis. The two non‐equivalent Cr and Mg atoms both show octahedral coordination, with a mean Cr—O distance of 1.966 Å and a mean Mg—O distance of 2.066 Å. Dirubid­ium copper(II) dioxalate dihydrate [di­aqua­bis(μ‐oxalato)­copper(II)­dirubidium(I)], [Rb2Cu(C2O4)2(H2O)2], (III), is also layered and is isotypic with the previously described K2‐ and (NH4)2CuII(C2O4)2·2H2O compounds. The two non‐equivalent Cu atoms lie on inversion centres and are both (4+2)‐coordinated. Hydro­gen bonds are medium‐strong to weak in the three compounds. The oxalate groups are slightly non‐planar only in the Cs–Mg compound, (II), and are more distinctly non‐planar in the K–Cu compound, (III).  相似文献   

8.
Crystal Structure of Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O The crystall structures of the isostructural halates Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O were determined using X-ray single crystal data (monoclinic space group C2/c? C, Z = 4), The mean bond lengths and bond angles of the halate ions in the Ba(ClO3)2 · 1 H2O-type compounds, which correspond to those of other halates, are Cl? O, 149.0, Br? O, 165.9, I? O, 180.2 pm, ClO3?, 106.4, BrO3?, 104.0, and IO3?, 99.6°. The structure data obtained are discussed in terms of possible orientational disorder of the water molecules, strengths of the hydrogen bonds, influence of the lead ions on the structure, and site group distortion of the halate ions.  相似文献   

9.
Introduction1,4 Dihydropyridinesofthenifedipinetype (e .g .I—III)arethemoststudiedclassoforganiccalciumchannelmedicine ,whichhavebecomealmostindispens ableforthetreatmentofcardiovasculardiseasessuchashypertension ,cardiacarrhythmias ,orangina .1Inthepastdecade…  相似文献   

10.
A new 3d–4f heterometallic coordination framework, {[Eu(ox)(H2O)4] · [CuBr(2‐pzc)2] · 4H2O} ( 1 ) [ox = oxalate; 2‐pzc = pyrazine‐2‐carboxylate] was synthesized and characterized by elemental analysis, IR spectroscopy and thermal analysis, as well as single‐crystal X‐ray diffraction. Complex 1 represents one 3D supramolecular heterometallic coordination framework that is assembled from rare lanthanide‐ox anionic chains and CuBr(2‐pzc)2 cationic units through hydrogen bonds.  相似文献   

11.
12.
The pale‐rose compound [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] · 4 H2O was prepared from adipic acid and CoCO3 in aqueous solution. The crystal structure (monoclinic, P21/n (no. 14), a = 8.061(1), b = 15.160(2), c = 9.708(2) Å, β = 90.939(7)°, Z = 2, R = 0.0405, wR2 = 0.0971) consists of adipate bridged supramolecular [(μ‐C6H8O4)4/2Co(μ‐H2O)2Co(H2O)4] layers and hydrogen bonded H2O molecules. The cobalt atoms Co1 and Co2 are distorted octahedrally coordinated by the O atoms of two bridging trans‐H2O molecules and four bidentate adipate anions (Co1) and by the O atoms of two bridging trans‐H2O molecules and four monodentate H2O molecules (Co2), respectively. Equatorial bonds: d(Co1–O) = 2.048 Å (2 × ), 2.060 Å (2 × ); d(Co2–O) = 2.057 Å (2 × ), 2.072 Å (2 × ). Axial bonds: d(Co1–O) = 2.235 Å (2 × ); d(Co2–O) = 2.156 Å (2 × ).  相似文献   

13.
Single and Double Deprotonated Maleic Acid in Praseodymium Hydrogenmaleate Octahydrate, Pr(C4O4H3)3 · 8 H2O, and Praseodymiummaleatechloride Tetrahydrate, Pr(C4O4H2)Cl · 4 H2O Single crystals of Pr(C4O4H3)3 · 8 H2O grew by slow evaporation of a solution which had been obtained by dissolving Pr(OH)3 in aqueous maleic acid. The triclinic compound (P1, Z = 2, a = 728.63(3), b = 1040.23(3), c = 1676.05(8) pm, α = 72.108(2)°, β = 87.774(2)°, γ = 70.851(2)°, Rall = 0.0261) contains Pr3+ ions in ninefold coordination of oxygen atoms which belong to two monodentate maleate ions and seven H2O molecules. There is one further non‐coordinating maleate ion and one crystal water molecule in the unit cell. Thermal treatment of Pr(C4O4H3)3 · 8 H2O leads first to the anhydrous compound which then decomposes to the respective oxide in two steps upon further heating. Evaporation of a solution of Pr(C4O4H3)3 · 8 H2O which contained additional Cl ions yielded single crystals of Pr(C4O4H2)Cl · 4 H2O. In the crystal structure (monoclinic, P21/c, Z = 4, a = 866.0(1), b = 1344.3(1), c = 896.9(1) pm, β = 94.48(2)°, Rall = 0.0227), the Pr3+ ions are surrounded by nine oxygen atoms. The latter belong to four H2O molecules and three maleate ions. Two of the latter act as bidentate ligands.  相似文献   

14.
采用等温蒸发平衡法研究了四元体系K2B4O7-Na2B4O7-Li2B4O7-H2O15℃时的介稳相平衡及平衡液相的物化性质(密度,粘度,电导率,折光率,pH)。根据实验数据绘制了相图,相图中有一个共饱点E,三条单变度曲线E3F,E2F,E1F;三个平衡固相分别为:K2B4O7•4H2O,Na2B4O7•10H2O和Li2B2O4•16H2O;硼酸钾具有最大溶解度,硼酸钠具有最小溶解度。同时,根据试验数据绘制了组成-物化性质关系图,从图可见溶液的密度,粘度和折光率均随着溶液浓度的增大而逐渐增大,在共饱和点F处达到最大值,而溶液的pH值和电导率却随着溶液浓度的增大呈总体下降的趋势。  相似文献   

15.
Single crystals of fluoride hydrates Mn3F8 · 12 H2O and AgMnF4 · 4 H2O have been prepared and characterized by X-ray methods. Mn3F8 · 12 H2O crystallizes in the space group P1 (a = 623.0(3), b = 896.7(4), c = 931.8(4) pm, α = 110.07(2)°, β = 103.18(2)°, γ = 107.54(2)°, Z = 1); AgMnF4 · 4 H2O crystallizes in the space group P21/m (a = 700.9(2), b = 726.1(1), c = 749.4(3) pm, β = 107.17(3)°, Z = 2). Both structures contain Jahn-Teller-distorted [Mn(H2O)2F4]? anions as well as crystal water molecules and exhibit a complex hydrogen bond network between anions and cations, i. e. [Mn(H2O)6]2+ for the first and a polymeric [Ag(H2O)2]? cation for the second compound.  相似文献   

16.
The Crystal Structures of K8Ta6O19 · 16H2O and K7NaTa6O19 · 14H2O By alkaline digestion of Ta2O5 with p.a. KOH transparent single crystals of the composition K8Ta6O19 · 16H2O are formed. When technical grade KOH is used, the same kind of synthesis yields crystals of the composition K7NaTa6O19 · 14H2O. The latter compound has been given the formula K8Ta6O19 · 14H2O until now. In both cases the isopolyoxoanion [Ta6O19]8 consists of six TaO6-octahedra connected by edge sharing. This means that the heavy atom partial structure found by Lindquist et al. is confirmed. Additionally the complete structures including the atomic positions of the oxygen atoms of the polyanions as well as those of the cations and crystal water molecules (without hydrogen positions) are determined.  相似文献   

17.
Single crystals of Li4(PO2NH)4 · 4 H2O were obtained by dissolving LiOH and H4(PO2NH)4 · 2 H2O in water and subsequent precipitation with acetone and ethanol followed by slow evaporation of the solvents. The structure of Li4(PO2NH)4 · 4 H2O was solved by single‐crystal X‐ray methods ( (No. 2), a = 489.2(2), b = 853.2(2), c = 880.5(2) pm, α = 101.71(3), β = 102.39(3), γ = 94.88(3)°, Z = 1). The structure is composed of LiO4 tetrahedra and (PO2NH)44? ions. The P4N4 rings of the anions exhibit a slightly distorted chair–1 conformation, which is supported by IR data and has been described by torsion angles, displacement asymmetry parameters and puckering parameters. Via Li+ ions and hydrogen bonds, the tetrametaphosphimate anions are connected forming a three‐dimensional network.  相似文献   

18.
The complexes cis‐[SnCl4(H2O)2]·2H2O ( 1 ), [Sn2Cl6(OH)2(H2O)2]·4H2O ( 3 ), and [HL][SnCl5(H2O)]·2.5H2O ( 4 ) were isolated from a CH2Cl2 solution of equimolar amounts of SnCl4 and the ligand L (L=3‐acetyl‐5‐benzyl‐1‐phenyl‐4, 5‐dihydro‐1, 2, 4‐triazine‐6‐one oxime, C18H18N4O2) in the presence of moisture. 1 crystallizes in the monoclinic space group Cc with a = 2402.5(1) pm, b = 672.80(4) pm, c = 1162.93(6) pm, β = 93.787(6)° and Z = 8. 4 was found to crystallize monoclinic in the space group P21, with lattice parameters a = 967.38(5) pm, b = 1101.03(6) pm, c = 1258.11(6) pm, β = 98.826(6)° and Z = 2. The cell data for the reinvestigated structures are: [SnCl4(H2O)2]·3H2O ( 2 ): a = 1227.0(2) pm, b = 994.8(1) pm, c = 864.0(1) pm, β = 103.86(1)°, with space group C2/c and Z = 4; 3 : a = 961.54(16) pm, b = 646.29(7) pm, c = 1248.25(20) pm, β = 92.75(1)°, space group P21/c and Z = 4.  相似文献   

19.
Oxalato‐ and Squarato‐Bridged Threedimensional Networks: The Crystal Structures of La2(C2O4)(C4O4)2(H2O)8 · 2.5 H2O and K[Bi(C2O4)2] · 5 H2O The title compounds have been formed by hydrolysis of amino‐ and thioderivatives of squaric acid in the presence of LaIII and BiIII ions. Both compounds are threedimensional coordination polymers in the solid state, as shown by single crystal X‐ray crystallography. In La2(C2O4)(C4O4)2(H2O)8 · 2.5 H2O oxalato‐bridged pairs of LaO9 polyhedra are connected with identical neighbouring polyhedra by squarate ions. In K[Bi(C2O4)2] · 5 H2O each Bi atom is fourfold linked to other Bi atoms by the oxalate ions. The resulting 3D network shows a diamond‐like topology with square‐shaped channels. In both structures the channels are partially filled by water molecules.  相似文献   

20.
[Rb2(H2O)2][Re3(μ-Cl)3Br7(H2O)2]2 · H2O, a Mixed Halide-Hydrate with the Anionic Dimer {[Re3(μ-Cl)3Br7(H2O)2]2 · H2O}2? [Rb2(H2O)2][Re3(μ-Cl)3Br7(H2O)2]2 · H2O crystallizes as dark redbrown single crystals from an hydrobromic-acid solution of ReCl3 and RbBr at 0°C. An important feature of the crystal structure (monoclinic, C2/c; a = 1494.61(8); b = 835.71(4); c = 3079.96(19) pm; β = 97.801(4)°; Vm = 573.9(4) cm3mol?1; R = 0.060; Rw = 0.038) is the connection of two anions [Re3(μ-Cl)3Br7(H2O)2]? via a water molecule to dimers, {[Re3(μ-Cl)3Br7(H2O)2]2 · H2O}2?. These dimeric units are contained in slabs that are stacked in the [001] direction and held together by Rb+ cations and crystal water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号