首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of orthorhombic bis[pentaammineaquacobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Ibam), [Co(NH3)5(H2O)]2[Zr3F18]·6H2O, (I), and bis[hexaamminecobalt(III)] tetra‐μ2‐fluorido‐tetradecafluoridotrizirconium(IV) hexahydrate (space group Pnna), [Co(NH3)6]2[Zr3F18]·6H2O, (II), consist of complex [Co(NH3)x(H2O)y]3+ cations with either m [in (I)] or and 2 [in (II)] symmetry, [Zr3F18]6− anionic chains located on sites with 222 [in (I)] or 2 [in (II)] symmetry, and water molecules.  相似文献   

2.
[Cd(H2O)3(C5H6O4)]·2H2O ( 1 ) and Cd(H2O)2(C6H8O4) ( 2 ) were prepared from reactions of fresh CdCO3 precipitate with aqueous solutions of glutaric acid and adipic acid, respectively, while Cd(H2O)2(C8H12O4) ( 3 ) crystallized in a filtrate obtained from the hydrothermal reaction of CdCl2·2.5H2O, suberic acid and H2O. Compound 1 consists of hydrogen bonded water molecules and linear {[Cd(H2O)3](C5H6O4)2/2} chains, which result from the pentagonal bipyramidally coordinated Cd atoms bridged by bis‐chelating glutarato ligands. In 2 and 3 , the six‐coordinate Cd atoms are bridged by bis‐chelating adipato and suberato ligands into zigzag chains according to {[Cd(H2O)3](C5H6O4)2/2} and {[Cd(H2O)2](C8H12O4)2/2}, respectively. The hydrogen bonds between water and the carboxylate oxygen atoms are responsible for the supramolecular assemblies of the zigzag chains into 3D networks. Crystallographic data: ( 1 ) P1¯ (no. 2), a = 8.012(1), b = 8.160(1), c = 8.939(1) Å, α = 82.29(1)°, β = 76.69(1)°, γ = 81.68(1)°, U = 559.6(1) Å3, Z = 2; ( 2 ) C2/c (no. 15), a = 16.495(1), b = 5.578(1), c = 11.073(1) Å, β = 95.48(1)°, U = 1014.2(1) Å3, Z = 4; ( 3 ) P2/c (no. 13), a = 9.407(2), b = 5.491(1), c = 11.317(2) Å, β = 95.93(3)°, U = 581.4(2) Å3, Z = 2.  相似文献   

3.
Te(OH)6 · 2Na3P3O9 · 6H2O, is hexagonal (P63/m) with a = 11,67(1), c = 12,12(1) Å, Z = 2 and Dx = 2,225 g/cm3. Te(OH)6 · K3P3O9 · 2H2O, is monoklin (P21/c) with a = 19,61(5), b = 7,456(1), c = 14,84(6) Å, = 108,01(4), Z = 4 and Dx = 2,506 g/cm3. Both compounds are the first examples of phosphate tellurates in which the anion phosphate is condensed to the ring anion P3O9. As in phosphate tellurates already described the phosphate groups are independent of the TeO6 octahedra.  相似文献   

4.
Crystal Structure of the Magnesium Octachlorotrimercurate(II)-hexahydrate MgHg3Cl8 · 6 H2O Colourless crystals of MgHg3Cl8 · 6 H2O were obtained by crystallization from aqueous solutions of MgCl2 and HgCl2. There were no indications of the existence of the reported compounds MgHgCl4 · 6 H2O and MgHg2Cl6 · 6 H2O. The crystal structure of the triclinic MgHg3Cl8 · 6 H2O consists of linear pseudo HgCl2 molecules, binuclear Hg2Cl6 anions and octahedral Mg(OH2)6 kations.  相似文献   

5.
The calcium salts Ca2P2O6 · 2H2O ( 1 ) and [Ca(H2O)3(H2P2O6)] · 0.5(C12H24O6) · H2O ( 2 ) were prepared and structurally characterized by single‐crystal X‐ray diffraction. Compound 1 crystallizes in the orthorhombic space group Pbca and compound 2 in the monoclinic space group P21/n. The crystal structure of compound 1 consists of chains of edge‐sharing [CaO7] polyhedra linked by hypodiphosphate(IV) anions to form a three‐dimensional network. The crystal structure of compound 2 consists of alternated layers of crown ether and water molecules and respective ionic units. Within the layers of ionic units the Ca2+ cations are octahedrally coordinated by three monodentate dihydrogenhypodiphosphate(IV) anions and three water molecules. The IR/Raman spectra of the title compounds were recorded and interpreted, especially with respect to the [P2O6]4– and [H2P2O6]2– groups. The phase purity of 2 was verified by powder diffraction measurements.  相似文献   

6.
Synthesis and Crystal Structures of Chlororhenates(III) with the Divalent Cations Ethylenediammonium and Piperazinium: (EnH2)2(PipzH2) [Re3Cl12]2·6H2O, (EnH2) (PipzH2) [Re3Cl12]Cl· H2O, and (PipzH2) [Re3Cl11(H2O)] · 3H2O The deep red salt (EnH2)2(PipzH2)[Re3CI12] · 6 H2O ( 1 ), (EnH2)(PipzH2)[Re3Cl12]CI · H2O ( 2 ), and (PipzH2)[Re3Cl11(H2O)] · 3H2O ( 3 ) crystallize upon evaporation from hydrochloride acid solutions of ReCl3 on addition of ethylenediammonium chloride (EnH2Cl2) and/or piperazinium chloride (PipzH2Cl2). The crystal structures have been determined from four-circle diffractometer data. 1: monoclinic; a = 1889.63(11), b = 1615.82(8), c = 790.28(4)pm; β = 101.354(5)°; Z = 2; P21/n; R = 0.119, Rw = 0.070. 2: triclinic; a = 1330.35(4), b = 1051.14(5), c = 1165.32(6)pm; α = 122.308(4), β = 102.412(3), γ = 92.226(4)°; Z = 2, P1 ; R = 0.092, Rw = 0.059. 3: orthorhombic; a = 971.43(4), b = 1619.51(7), c = 1478.87(6)pm; Z = 4; Pbcm; R = 0.034, Rw = 0.032.  相似文献   

7.
Crystals of [H5O2][Ru(CO)3Cl3] · SbCl3 are triclinic, space group P1 , with unit cell of dimensions: a = 7.129(2), b = 10.129(3), c = 10.997(3) Å, α = 75.40(2)°, β = 97.17(2)°; γ = 120.94(2)°. The structure was solved from X-ray diffractometer data by Patterson and Fourier synthesis and refined by full matrix least-squares method to R = 3.02% for 3268 independent reflections. The [Ru(CO)3Cl3]? anion has an approximately octahedral fac configuration. The antimony atom has three chlorine neighbours at 2.387(2), 2.364(2) and 2.368(2) Å giving the expected angular conformation and three other neighbours at longer distances completing with the lone pair a monocaped octahedral environment around antimony. The acidic hydrogen has been transfered to two water molecules giving an asymmetric [H5O2]+ ion with a very short hydrogen bond of 2.373(9) Å.  相似文献   

8.
Phosphorane Iminato Complexes of Antimony. The Crystal Structures of [Sb2Cl5(NPMe3)2][SbCl6] · CH3CN and [SbCl(NPPh3)]2[SbCl6]2 · 6 CH3CN The title compounds are formed by reaction of antimony pentachloride in acetonitrile solution with the phosphorane iminato complexes SbCl2(NPMe3) and SbCl2(NPPh3), respectively, which themselves are synthesized by reaction of antimony trichloride with Me3SiNPR3 (R = Me, Ph). The complexionic compounds are characterized by 121Sb Mössbauer spectroscopy and by crystal structure determinations. [Sb2Cl5(NPMe3)2][SbCl6] · CH3CN: Space group P41, Z = 4, 3 698 observed unique reflections, R = 0.022. Lattice dimensions at ?60°C: a = b = 1 056.0(1), c = 2 709.6(2) pm. The structure consists of SbCl6? ions and cations [Sb2Cl5(NPMe3)2(CH3CN)]+, in which one SbIII atom and one SbV atom are bridged by the N atoms of the phosphorane iminato ligands. [SbCl(NPPh3)]2[SbCl6]2 · 6 CH3CN: Space group P1 , Z = 2, 5 958 observed unique reflections, R = 0.033. Lattice dimensions at ?60°C: a = 989.4(11), b = 1 273(1), c = 1 396(1) pm, α = 78.33(7), β = 77.27(8)°, γ = 86.62(8)°. The structure consists of SbCl6? ions and centrosymmetric cations [SbCl(NPPh3)(CH3CN)2]22+, in which the antimony atoms are bridged by the N atoms of the phosphorane iminato ligands.  相似文献   

9.
Crystal Structure of Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O The crystall structures of the isostructural halates Sr(BrO3)2 · H2O, Ba(BrO3)2 · H2O, Ba(IO3)2 · H2O, Pb(ClO3)2 · H2O, and Pb(BrO3)2 · H2O were determined using X-ray single crystal data (monoclinic space group C2/c? C, Z = 4), The mean bond lengths and bond angles of the halate ions in the Ba(ClO3)2 · 1 H2O-type compounds, which correspond to those of other halates, are Cl? O, 149.0, Br? O, 165.9, I? O, 180.2 pm, ClO3?, 106.4, BrO3?, 104.0, and IO3?, 99.6°. The structure data obtained are discussed in terms of possible orientational disorder of the water molecules, strengths of the hydrogen bonds, influence of the lead ions on the structure, and site group distortion of the halate ions.  相似文献   

10.
New Oxonium Bromochalcogenates(IV) — Synthesis, Structure, and Properties of [H3O][TeBr5] · 3 C4H8O2 and [H3O]2[SeBr6] Dark red crystals of the composition [H3O][TeBr5] · 3 C4H8O2 ( 1 ) were isolated from a saturated solution of TeBr4 in 1,4-dioxane containing a small amount of water. In this compound (space group P21/m, a = 8.922(4) Å, b = 13.204(7) Å, c = 9.853(5) Å, β = 91.82(4)° at 150 K) a square pyramidal [TeBr5]? anion has been isolated for the first time. The coordination sphere of the anion is completed to a distorted octahedron by weak interaction with a dioxane molecule of the cationic system. The [H3O]+ cations are connected to chains by dioxane molecules. At room temperature the compound is stable only in its mother liquor. Crystalline [H3O]2[SeBr6] ( 2 ) (space group Fm3m, a = 10.421(1) Å at 170 K) is a bromoselenous acid of high symmetry. The [H3O]+ ion is only weakly coordinated by Br atoms of the anion. The anions are isolated octahedral [SeBr6]2? units. The structure is isotypic to the K2[PtCl6] structure. Despite being a halogenochalcogen(IV) acid, 2 exhibits a remarkable thermal stability. Both oxonium compounds were characterized by single-crystal X-ray structure analyses. Vibrational spectra of 2 are reported.  相似文献   

11.
12.
The Lanthanum Dodecahydro‐closo‐Dodecaborate Hydrate [La(H2O)9]2[B12H12]3·15 H2O and its Oxonium‐Chloride Derivative [La(H2O)9](H3O)Cl2[B12H12]·H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic La2O3 and after isothermic evaporation colourless, face‐rich single crystals of a water‐rich lanthanum(III) dodecahydro‐closo‐dodecaborate hydrate [La(H2O)9]2[B12H12]3·15 H2O are isolated. The compound crystallizes in the trigonal system with the centrosymmetric space group (a = 1189.95(2), c = 7313.27(9) pm, c/a = 6.146; Z = 6; measuring temperature: 100 K). The crystal structure of [La(H2O)9]2[B12H12]3·15 H2O can be characterized by two of each other independent, one into another posed motives of lattice components. The [B12H12]2− anions (d(B–B) = 177–179 pm; d(B–H) = 105–116 pm) are arranged according to the samarium structure, while the La3+ cations are arranged according to the copper structure. The lanthanum cations are coordinated in first sphere by nine oxygen atoms from water molecules in form of a threecapped trigonal prism (d(La–O) = 251–262 pm). A coordinative influence of the [B12H12]2− anions on La3+ has not been determined. Since “zeolitic” water of hydratation is also present, obviously the classical H–Oδ–···H–O‐hydrogen bonds play a significant role in the stabilization of the crystal structure. During the conversion of an aqueous solution of (H3O)2[B12H12] with lanthanum trichloride an anion‐mixed salt with the composition [La(H2O)9](H3O)Cl2[B12H12]·H2O is obtained. The compound crystallizes in the hexagonal system with the non‐centrosymmetric space group (a = 808.84(3), c = 2064.51(8) pm, c/a = 2.552; Z = 2; measuring temperature: 293 K). The crystal structure can be characterized as a layer‐like structure, in which [B12H12]2− anions and H3O+ cations alternate with layers of [La(H2O)9]3+ cations (d(La–O) = 252–260 pm) and Cl anions along [001]. The [B12H12]2− (d(B–B) = 176–179 pm; d(B–H) = 104–113 pm) and Cl anions exhibit no coordinative influence on La3+. Hydrogen bonds are formed between the H3O+ cations and [B12H12]2− anions, also between the water molecules of [La(H2O)9]3+ and Cl anions, which contribute to the stabilization of the crystal structure.  相似文献   

13.
The structure of [B6H9NaO14, H3BO3, 6H2O] was determined by single‐crystal X‐ray diffraction and further analyzed by FTIR spectroscopy and differential thermal/thermogravimetric analysis. The asymmetric unit contains Na–O polyhedra (distorted octahedron), [B6O8(OH)3] fundamental building blocks, one free water molecule and one free H3BO3 molecule. In the hexaborate anion, three B3O3 rings are linked by a common oxygen atom with five trigonal and one tetrahedral boron atoms. The hexaborate group is also linked to the oxygenated environment of the sodium atom by three other six‐membered rings, each of which involve two boron atoms, three oxygen atoms, and sodium as the joint atom.  相似文献   

14.
Single crystals of molybdenum(VI) tricopper(II) tellurium(IV) hepta­oxide dichloride hemihydrate, MoCu3TeO7Cl2·0.5H2O, were synthesized via a transport reaction in sealed evacuated silica tubes. All atoms occupy general positions within the triclinic () unit cell. The building units are irregular CuO4Cl and CuO3Cl2 square pyramids, distorted TeO3+1E trigonal bipyramids (E is the lone pair of TeIV) and irregular MoO5 pyramids. The TeO3+1E, CuO4Cl and CuO3Cl2 polyhedra form (110) layers bridged by Mo atoms. The water mol­ecules are located in [100] channels.  相似文献   

15.
Molybdenum(II) Halide Clusters with six Alcoholate Ligands: (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6CH3OH and (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] . The reaction of Na2[Mo6Cl8(OCH3)6] and 2,2,2-crypt yields (C18H36N2O6Na)2[Mo6Cl8(OCH3)6] · 6 CH3OH ( 1 ), which is converted to (C18H36N2O6Na)2[Mo6Cl8(OC6H5)6] ( 2 ) by metathesis with phenol. According to single crystal structure determinations ( 1 : P3 1c, a=14.613(3) Å, c=21.036(8) Å; 2 : P3 1c, a=15.624(1) Å, c=19.671(2) Å) the compounds contain anionic clusters [Mo6Cl8i(ORa)6]2? ( 1 : d(Mo—Mo) 2.608(1) Å to 2.611(1) Å, d(Mo—Cl) 2.489(1) Å to 2.503(1) Å, d(Mo—O) 2.046(4) Å; 2 : d(Mo—Mo) 2.602(3) Å to 2.608(3) Å, d(Mo—Cl) 2.471(5) Å to 2.4992(5) Å, d(Mo—O) 2.091(14) Å). Electronic interactions of the halide cluster and the phenolate ligands in [Mo6Cl8(OC6H5)6]2? is investigated by means of UV/VIS spectroscopy and EHMO calculations.  相似文献   

16.
The structure features an anionic three‐dimensional network built from zinc ions and trimesate ligands. The structure contains parallelogrammic channels in which H2NMe2 molecules interact with dimethylformamide guest molecules and the framework through hydrogen bonds. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Several rare‐earth cyclotriphosphate hydrates were obtained from mixtures of sodium cyclotriphosphates and the respective rare‐earth chlorides. Nd(P3O9) · 3H2O [P$\bar{6}$ , Z = 3, a = 677.90(9), c = 608.67(9) pm, R1 = 0.016, wR2 = 0.038, 312 data, 36 parameters] was obtained by a solid state reaction and is isotypic with respective rare‐earth phosphate hydrates, while all the others adopt new structure types. Nd(P3O9) · 4.5H2O [C2/c, Z = 8, a = 1644.6(3), b = 756.11(15), c = 1856.1(4) pm, β = 97.25(3)°, R1 = 0.032, wR2 = 0.081, 1763 data, 194 parameters], Nd(P3O9) · 5H2O [P21/c, Z = 4, a = 773.75(15), b = 1149.1(2), c = 1394.9(3) pm, β = 106.07(3)°, R1 = 0.042, wR2 = 0.082, 1338 data, 194 parameters], Pr(P3O9) · 5H2O [P$\bar{1}$ , Z = 2, a = 745.64(15), b = 889.07(18), c = 934.55(19) pm, α = 79.00(3), β = 80.25(3), γ = 66.48(3), R1 = 0.059, wR2 = 0.089, 1468 data, 193 parameters], Na3Nd(P3O9)2 · 6H2O [P21/n, Z = 4, a = 1059.78(18), b = 1207.25(15), c = 1645.7(4) pm, β = 99.742(17), R1 = 0.047, wR2 = 0.119, 1109 data, 351 parameters] and Na3Pr(P3O9)2 · 6H2O [P21/n, Z = 4, a = 1061.42(16), b = 1209.0(2), c = 1635.5(3) pm, β = 99.841(13), R1 = 0.035, wR2 = 0.062, 1323 data, 350 parameters] were obtained by careful crystallization at room temperature. A thorough structure discussion is given. The infrared spectrum of Nd(P3O9) · 4.5H2O is also reported.  相似文献   

18.
The product from reaction of lanthanum chloride heptahydrate with salicylic acid and thioproline, [La(Hsal)2•(tch)]•2H2O, was synthesized and characterized by IR, elemental analysis, molar conductance, thermogravimatric analysis and chemistry analysis. The standard molar enthalpies of solution of LaCl3•7H2O (s), [2C7H6O3 (s)], C4H7NO2S (s) and [La(Hsal)2•(tch)]•2H2O (s) in a mixed solvent of absolute ethyl alcohol, dimethyl sulfoxide (DMSO) and 3 mol•L-1 HCl were determined by calorimetry to be [LaCl3•7H2O (s), 298.15 K]=(-102.36±0.66) kJ•mol-1, [2C7H6O3 (s), 298.15 K]=(26.65±0.22) kJ•mol-1, [C4H7NO2S (s), 298.15 K]=(-21.79±0.35) kJ•mol-1 and {[La(Hsal)2•(tch)]•2H2O (s), 298.15 K}=(-41.10±0.32) kJ•mol-1. The enthalpy change of the reaction LaCl3•7H2O (s)+2C7H6O3 (s)+C4H7NO2S (s)=[La(Hsal)2•(tch)]•2H2O (s)+3HCl (g)+5H2O (l) (Eq. 1) was determined to be =(41.02±0.85) kJ•mol-1. From date in the literature, through Hess’ law, the standard molar enthalpy of formation of [La(Hsal)2•(tch)]•2H2O (s) was estimated to be {[La(Hsal)2•(tch)]•2H2O (s), 298.15 K}=(-3017.0±3.7) kJ•mol-1.  相似文献   

19.
Alkaline Molybdotellurates: Preparation and Crystal Structures of Rb6[TeMo6O24] · 10H2O and Rb6[TeMo6O24] · Te(OH)6 · 6H2O Single crystals of Rb6[TeMo6O24] · 10 H2O and Rb6[TeMo6O24] · Te(OH)6 · 6 H2O, respectively, were grown from aqueous solution. Rb6[TeMo6O24] · 10 H2O possesses the space group P1 . The lattice dimensions are a = 963.40(13), b = 972.56(12), c = 1 056.18(13) pm, α = 97.556(10), β = 113.445(9), γ = 102.075(10)°; Z = 1, 2 860 reflections, 215 parameters refined, Rg = 0.0257. The centrosymmetrical [TeMo6O24]6? anions are stacked parallel to [010]. Rb(2) is coordinated with one exception by water molecules only. Folded chains consisting of [TeMo6O24]6? anions and Rb(2) coordination polyhedra which are linked to pairs represent the prominent structural feature. Rb6[TeMo6O24] · Te(OH)6 · 6 H2O crystallizes monoclinically in the space group C2/c with a = 1 886.4(3), b = 1 000.9(1), c = 2 126.5(3) pm, and β = 115.90(1)°; Z = 4, 3 206 reflections, 240 parameters refined, Rg = 0.0333. It is isostructural in high extent with (NH4)6[TeMo6O24] · Te(OH)6 · 7 H2O. Hydrogen bonds between Te(OH)6 molecules and [TeMo6O24]6? anions establish infinite strands. The [TeMo6O24]6? anions gather around Te(OH)6 providing channel-like voids extending parallel to [001].  相似文献   

20.
The structure of trans‐(bromo/­chloro)­hy­drido­tetra­kis­(tri‐me­thyl­phos­phine)­rhod­ium(III) bis­(tetra­bromo­pyro­catechol‐ato‐O,O′)­borate dichloromethane solvate, [RhCl0·74Br0·26H‐(C3­H9­P)4]­(C12­BBr8­O4)·­CH2Cl2, is reported. The RhIII com­plex shows bromine/chlorine compositional disorder with a trans arrangement of the hydride and halide ligands. The anion has approximate D2d symmetry, with a central spiro‐B atom distorted from regular tetrahedral geometry by the small chelating O—B—O angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号