首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the title compounds, C18H20N2O2, (I), and C14H11N3O4·0.5H2O, (II), respectively, the oxime groups have an E configuration. In (I), the mol­ecules exist as polymers bound by intermolecular C—H⋯O and O—H⋯N hydrogen bonds around inversion centres. In (II), intermolecular OW—H⋯N, OW—H⋯O and O—H⋯OW interactions stabilize the molecular packing.  相似文献   

2.
The title compounds, C15H16ClN2O+·Br·1.5H2O and C15H16BrN2O+·Br·1.5H2O, are isomorphous. The benzene ring is oriented nearly normal to the pyridine ring in both compounds. The molecular packing is mainly influenced by intermolecular O—H⋯O and O—H⋯Br interactions, as well as weak intramolecular C—H⋯O interactions. The H2OBr units form an extended water–bromide chain, with a bridging water mol­ecule on a twofold axis.  相似文献   

3.
The two title mol­ecules, both C15H14N2O3, are roughly planar and display a trans conformation with respect to the –N=N– double bond, as found for other diazene derivatives. In both compounds, there are intramolecular O—H⋯O hydrogen bonds and the crystal packing is governed by weak intermolecular C—H⋯O hydrogen bonds and π–π stacking.  相似文献   

4.
The title compounds, both C23H21ClN2OS, are isomeric, with (I) and (II) being the N‐3‐methyl­phenyl and N‐2‐methyl­phenyl derivatives, respectively. The dihedral angle between the 4‐chloro­phenyl group and the thio­phene ring in (II) [38.1 (1)°] is larger than that in (I) [7.1 (1)°], indicating steric repulsion between the chloro­phenyl and o‐toluidine groups in (II). In both compounds, an intramolecular N—H⋯N hydrogen bond forms a pseudo‐six‐membered ring, thus locking the molecular conformation. In the crystal structures, mol­ecules are connected via N—H⋯O hydrogen bonds, forming chains along the b axis in (I) and along the c axis in (II). Intermolecular C—H⋯O/S and π–π interactions are also observed in (II), but not in (I).  相似文献   

5.
The crystal structures of the title compounds, viz. C24H14F2N2O2, (I), and C25H17FN2O2, (II), respectively, have been determined in order to unravel the role of an ordered F atom in generating stable supra­molecular assemblies. On changing the substitution from fluorine to a methyl group, C—H⋯F inter­actions are replaced by C—H⋯π inter­actions, revealing the importance of such weak inter­actions when present alongside N—H⋯O and C—H⋯O hydrogen bonds. The dihedral angle between the planes of the 4‐fluoro­phenyl ring and the pyridine ring is 26.8 (1)° in (I), while that between the planes of the 4‐methyl­phenyl and pyridine rings is 29.5 (1)° in (II).  相似文献   

6.
In the title compound, C8H12N+·C8HN4O2, the anion and cation lie on a crystallographic mirror plane and form planar ribbons via N—H⋯O [N⋯O = 2.933 (4) Å, H⋯O = 2.01 Å and N—H⋯O = 170°] and N—H⋯N [N⋯N = 3.016 (5) Å, H⋯N = 2.15 Å and N—H⋯N = 169°] hydrogen bonds. The ribbons are further linked via weak C—H⋯O and C—H⋯N hydrogen bonds. In adjacent planes, anions lie opposite cations; π–π interactions (separation a/2 = 3.520 Å) exist between the anions and the cations, and stacks are formed, running along the a axis. The cations are disordered over two interpenetrating sites, with occupancies of 0.833 (5) and 0.167 (5).  相似文献   

7.
The 1:1 adduct of N,N′‐bis­(di­phenyl­methyl­ene)­ethyl­enedi­amine (bz2en) with copper(I) chloride, viz. [Cu(C28H24N2)2][CuCl2], has been synthesized. The structure contains cationic moieties of CuI ions (Cu on a twofold axis) coordinated to four N atoms of two bz2en mol­ecules (in a distorted tetrahedron) and linear di­chloro­cuprate(I) anions (with Cu on an inversion centre). These cations and anions are packed in columns along b. The packing of the cation and anion columns involves a significant C—H⋯Cl interaction and four short intermolecular C—H⋯π contacts, two of which are between cation columns.  相似文献   

8.
The geometries of the thia­zole ring and the nitr­amino groups in N‐(3H‐thia­zol‐2‐yl­idene)­nitr­amine, C3H3N3O2S, (I), and N‐­methyl‐N‐(thia­zol‐2‐yl)­nitr­amine, C4H5N3O2S, (II), are very similar. The nitr­amine group in (II) is planar and twisted along the C—N bond with respect to the thia­zole ring. In both structures, the asymmetric unit includes two practically equal mol­ecules. In (I), the mol­ecules are arranged in layers connected to each other by N—H⋯N and much weaker C—H⋯O hydrogen bonds. In the crystal structure of (II), the mol­ecules are arranged in layers bound to each other by both weak C—H⋯O hydrogen bonds and S⋯O dipolar interactions.  相似文献   

9.
Two chemical isomers of 3‐nitro­benzotrifluoride, namely 1‐(4‐chloro­phenyl­sulfanyl)‐2‐nitro‐4‐(tri­fluoro­methyl)­benzene, C13H7ClF3NO2S, (I), and 1‐(4‐chloro­phenyl­sulfanyl)‐4‐nitro‐2‐(tri­fluoro­methyl)­benzene, C13H7ClF3NO2S, (II), have been prepared and their crystal structures determined with the specific purpose of forming a cocrystal of the two. The two compounds display a similar conformation, with dihedral angles between the benzene rings of 83.1 (1) and 76.2 (1)°, respectively, but (I) packs in P while (II) packs in P21/c, with C—H⋯O interactions. No cocrystal could be formed, and it is suggested that the C—H⋯O associations in (II) prevent intermolecular mixing and promote phase separation.  相似文献   

10.
The title compounds, C12H20N6O2, (I), and C5H9N3O2, (II), display the characteristic features of 1,2,4‐triazole derivatives. Compound (I) lies about an inversion centre which is at the mid‐point of the central C—C bond. Compound (II) also contains a planar 1,2,4‐triazole ring but differs from (I) in that it has a hydr­oxy group attached to the ring. Mol­ecules of (I) are held together in the crystal structure by inter­molecular N—H⋯O contacts and by weak π–π stacking inter­actions between the 1,2,4‐triazole moieties. Compound (II) contains inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.  相似文献   

11.
The structures of the three title isomers, namely 4‐(2‐methyl­anilino)pyridine‐3‐sulfonamide, (I), 4‐(3‐methyl­anilino)pyridine‐3‐sulfonamide, (II), and 4‐(4‐methyl­anilino)pyridine‐3‐sulfonamide, (III), all C12H13N3O2S, differ in their hydrogen‐bonding arrangements. In all three mol­ecules, the conformation of the 4‐amino­pyridine‐3‐sulfon­amide moiety is conserved by an intra­molecular N—H⋯O hydrogen bond and a C—H⋯O inter­action. In the supra­mol­ecular structures of all three isomers, similar C(6) chains are formed via inter­molecular N—H⋯N hydrogen bonds. N—H⋯O hydrogen bonds lead to C(4) chains in (I), and to R22(8) centrosymmetric dimers in (II) and (III). In each isomer, the overall effect of all hydrogen bonds is to form layer structures.  相似文献   

12.
In ethyl N‐[2‐(hydroxy­acetyl)phenyl]carbamate, C11H13NO4, all of the non‐H atoms lie on a mirror plane in the space group Pnma; the mol­ecules are linked into simple chains by a single C—H⋯O hydrogen bond. The mol­ecules of ethyl N‐[2‐(hydroxy­acetyl)‐4‐iodo­phenyl]carbamate, C11H12INO4, are linked into sheets by a combination of O—H⋯I and C—H⋯O hydrogen bonds and a dipolar I⋯O contact. Ethyl N‐­[2‐(hydroxy­acetyl)‐4‐methyl­phenyl]carbamate, C12H15NO4, crystallizes with Z′ = 2 in the space group P; pairs of mol­ecules are weakly linked by an O—H⋯O hydrogen bond and these aggregates are linked into chains by two independent aromatic π–π stacking inter­actions.  相似文献   

13.
The two title chromene compounds, 3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C16H12O2, (I), and 2‐(2‐hydroxy­benzyl­idene)‐3,3a‐dihydrocyclo­penta­[b]chromen‐1(2H)‐one, C19H14O3, (II), have been determined in the monoclinic space group P21/n. Compound (I) is mainly stabilized by C—H⋯π inter­actions. Compound (II) is linked into infinite one‐dimensional chains with a C(3) motif via inter­molecular O—H⋯O hydrogen bonds. The inter­molecular C—H⋯π and π–­π inter­actions also play key roles in stabilizing the crystal packing. Two intra­molecular C—H⋯O hydrogen bonds with S(5) motifs were detected in (II).  相似文献   

14.
The title compound, C12H12N2O4S2, crystallizes in white and yellow polymeric forms as a result of inter­esting anti–anti and synanti conformational isomerism of the thio­carbon­yl and carbon­yl moieties relative to one another. This work is the first reported X‐ray crystallographic structure determination of isomers of this class of bipodal ligand. The white form, anti–anti, (I), crystallizes with the benzene ring lying about a twofold rotation axis, resulting in both of the thio­carbon­yl and carbon­yl moieties being anti relative to each other. The yellow modification crystallizes as synanti, (II), with one thio­carbon­yl moiety syn and the other anti relative to the respective carbon­yl groups. The individual mol­ecules of both (I) and (II) are extensively linked through inter­molecular hydrogen bonds. Inter­molecular hydrogen bonding in (II) includes a network of bifurcated N—H⋯O and N—H⋯S hydrogen bonds, while mol­ecules of (I) include bifurcated C—H⋯O hydrogen bonds.  相似文献   

15.
In the asymmetric unit of the title compound, C10H15N4O2+·H2PO4, there are two protonated amino­guanidinium cations and two dihydrogenphosphate anions. The positive charge on the protonated amidine group is delocalized over the three C—N bonds in a manner similar to that found in guanidinium salts. The amino­guanidinium cations are found to be the E‐isomer structures. Intra­molecular inter­actions of the N—H⋯N type are observed, leading to the formation of five‐membered rings. Extensive networks of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds stabilize the three‐dimensional network. In the crystal structure, π–π inter­actions between the benzene rings, with a distance of 3.778 (2) Å between the ring centroids, also affect the packing of the mol­ecules.  相似文献   

16.
Hydrogen bonds of four types (N—H⋯O=C, N—H⋯OH, O—H⋯O=C and O—H⋯OH) connect mol­ecules of the title compound, C14H20N2O4, in the crystal into sheets folded into a zigzag pattern. The inter­molecular inter­actions are discussed in terms of the first‐ through fourth‐level graph sets, and a constructor graph helps visualize the supra­molecular assembly.  相似文献   

17.
In the title compound 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐piperidone, C22H23NO3, (I), the central heterocyclic ring adopts a flattened boat conformation, while in the related salt 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐oxopiperidin­ium chloride, C22H24NO3+·Cl, (II), the ring exhibits a `sofa' conformation in which the N atom deviates from the planar fragment. The pendant benzene rings are twisted from the heterocyclic ring planes in both mol­ecules in the same direction, the range of dihedral angles between the ring planes being 24.5 (2)–32.7 (2)°. The dominant packing motif in (I) involves centrosymmetric dimers bound by weak intermolecular C—H⋯O hydrogen bonds. In (II), cations and anions are linked by strong N—H⋯Cl hydrogen bonds, while weak C—H⋯O and C—H⋯Cl hydrogen bonds link the cations and anions into a three‐dimensional framework.  相似文献   

18.
The 1,5‐benzodiazepine ring system exhibits a puckered boat‐like conformation for all four title compounds [4‐(2‐hydroxyphenyl)‐2‐phenyl‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C21H18N2O, (I), 2‐(2,3‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (II), 2‐(3,4‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (III), and 2‐(2,5‐dimethoxyphenyl)‐4‐(2‐hydroxyphenyl)‐2,3‐dihydro‐1H‐1,5‐benzodiazepine, C23H22N2O3, (IV)]. The stereochemical correlation of the two C6 aromatic groups with respect to the benzodiazepine ring system is pseudo‐equatorial–equatorial for compounds (I) (the phenyl group), (II) (the 2,3‐dimethoxyphenyl group) and (III) (the 3,4‐dimethoxyphenyl group), while for (IV) (the 2,5‐dimethoxyphenyl group) the system is pseudo‐axial–equatorial. An intramolecular hydrogen bond between the hydroxyl OH group and a benzodiazepine N atom is present for all four compounds and defines a six‐membered ring, whose geometry is constant across the series. Although the molecular structures are similar, the supramolecular packing is different; compounds (I) and (IV) form chains, while (II) forms dimeric units and (III) displays a layered structure. The packing seems to depend on at least two factors: (i) the nature of the atoms defining the hydrogen bond and (ii) the number of intermolecular interactions of the types O—H...O, N—H...O, N—H...π(arene) or C—H...π(arene).  相似文献   

19.
Crystallization of the title compound, di‐μ‐pyridazine‐1κ2N:2κ2N′‐bis­[(2,3‐dihydro‐3‐oxobenzisosulfonazolato‐κN)silver(I)], [Ag2(C7H4NO3S)2(C4H4N2)2], from acetonitrile yields both monoclinic, (I), and triclinic, (II), polymorphs. In both forms, the silver(I) ions have a slightly distorted trigonal AgN3 coordination geometry and are doubly bridged by two neutral pyridazine (pydz) ligands, generating a centrosymmetric dimeric structure. The saccharinate (sac) ligands are N‐coordinated. The dihedral angles between the sac and pydz rings are 8.43 (7) and 7.94 (8)° in (I) and (II), respectively, suggesting that the dimeric mol­ecule is nearly flat. The bond geometry is similar in both polymorphs. In (I), the dimers inter­act with each other via aromatic πsac–πpydz stacking inter­actions, forming two‐dimensional layers, which are further crosslinked by weak C—H⋯O inter­actions. Compound (II) exhibits similar C—H⋯O and π–π inter­actions, but additional C—H⋯π and π⋯Ag inter­actions help to stabilize the packing of the dimers.  相似文献   

20.
The title compound, C19H23N3O5, adopts the keto–amine tautomeric form with the hydr­oxy H atom located on the N atom, where it is involved in a strong intra­molecular N—H⋯O hydrogen bond. The compound exhibits trans geometry with respect to the azo N=N double bond, with a dihedral angle between the two benzene rings of 38.03 (6)°. The packing of the mol­ecules in the crystal structure is determined by O—H⋯O and C—H⋯O hydrogen bonds. A comparison with closely related compounds is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号