首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two δ‐keto carboxylic acids of the title, both C10H14O3, are epimeric at the site of carboxyl attachment. The endo (3α) epimer, (I), has its keto‐acid ring in a boat conformation, with the tilt of the carboxyl group creating conformational chirality. The mol­ecules form hydrogen bonds by centrosymmetric pairing of carboxyl groups across the corners of the chosen cell [O⃛O = 2.671 (2) Å and O—H⃛O = 179 (2)°]. Two close intermolecular C—H⃛O contacts exist for the ketone. The exo (3β) epimer exists in the closed ring–chain tautomeric form as the lactol, 8‐hydroxy‐9‐oxatri­cyclo­[5.3.1.03,8]­undecan‐10‐one, (II). The mol­ecules have conformational chirality, and the hydrogen‐bonding scheme involves intermolecular hydroxyl‐to‐carbonyl chains of mol­ecules screw‐related in b [O⃛O = 2.741 (2) Å and O—H⃛O = 177 (2)°].  相似文献   

2.
The title compound, (1R)‐4,7,7‐tri­methyl‐3‐oxobi­cyclo­[2.2.1]­heptane‐2‐endo‐acetic acid, C12H18O3, like its lower homolog, forms carboxyl‐to‐ketone hydrogen‐bonding catemers (Z′ = 2) [O⋯O = 2.729 (5) and 2.707 (5) Å, and O—H⋯O = 165 and 170°] with screw‐related components. The two mol­ecules of the asymmetric unit differ slightly in conformation and produce two counter‐aligned hydrogen‐bonding chains, both aligned with the b axis. Close intermolecular C—H⋯O=C contacts exist for the ketone group of one mol­ecule and for both the ketone and carboxyl functions in the other.  相似文献   

3.
In the title compound, C13H13N5O4·H2O (4,5′‐cyclo­wyosine·H2O), the cyclization forces a syn arrangement of the aglycon with respect to the sugar moiety. The ribo­furan­ose part of the mol­ecule displays a β‐d configuration with an envelope C1′‐endo pucker. The mol­ecules are arranged in columns along the short a axis and are linked to water mol­ecules through O—H?O and O—H?N hydrogen bonds.  相似文献   

4.
The mol­ecules of 2‐benzoyl‐1‐benzofuran, C15H10O2, (I), inter­act through double C—H⋯O hydrogen bonds, forming dimers that are further linked by C—H⋯O, C—H⋯π and π–π inter­actions, resulting in a three‐dimensional supramolecular network. The dihedral angle between the benzo­yl and benzofuran fragments in (I) is 46.15 (3)°. The mol­ecules of bis­(5‐bromo‐1‐benzofuran‐2‐yl) ketone, C17H8Br2O3, (II), exhibit C2 symmetry, with the carbon­yl group (C=O) lying along the twofold rotation axis, and are linked by a combination of C—H⋯O and C—H⋯π inter­actions and Br⋯Br contacts to form sheets. The stability of the mol­ecular packing in 3‐mesit­yl‐3‐methyl­cyclo­but­yl 3‐methyl­naphtho[1,2‐b]furan‐2‐yl ketone, C28H28O2, (III), arises from C—H⋯π and π–π stacking inter­actions. The fused naphthofuran moiety in (III) is essentially planar and makes a dihedral angle of 81.61 (3)° with the mean plane of the trimethyl­benzene ring.  相似文献   

5.
In ethyl N‐[2‐(hydroxy­acetyl)phenyl]carbamate, C11H13NO4, all of the non‐H atoms lie on a mirror plane in the space group Pnma; the mol­ecules are linked into simple chains by a single C—H⋯O hydrogen bond. The mol­ecules of ethyl N‐[2‐(hydroxy­acetyl)‐4‐iodo­phenyl]carbamate, C11H12INO4, are linked into sheets by a combination of O—H⋯I and C—H⋯O hydrogen bonds and a dipolar I⋯O contact. Ethyl N‐­[2‐(hydroxy­acetyl)‐4‐methyl­phenyl]carbamate, C12H15NO4, crystallizes with Z′ = 2 in the space group P; pairs of mol­ecules are weakly linked by an O—H⋯O hydrogen bond and these aggregates are linked into chains by two independent aromatic π–π stacking inter­actions.  相似文献   

6.
In the title compound, {[K2Ni(C5O5)2(H2O)2]·4H2O}n, the Ni atom lies on an inversion centre. Two inversion‐related croconate [4,5‐dihydroxy‐4‐cyclo­pentene‐1,2,3‐trionate(2−)] ligands and an NiII ion form a near‐planar symmetrical [Ni(C5O5)2]2− moiety. The near‐square coordination centre of the moiety is then extended to an octa­hedral core by vertically bonding two water mol­ecules in the [Ni(C5O5)2(H2O)2]2− coordination anion. The crystal structure is characterized by a three‐dimensional network, involving strong K⋯O⋯K binding, K⋯O—Ni binding and hydrogen bonding.  相似文献   

7.
In the tricyclic nucleoside 7‐(β‐d ‐ribo­furan­osyl)‐7H‐imidazo­[1,2‐c]­pyrazolo­[4,3‐e][1,2,3]­triazine, C11H12N6O4, the con­formation of the N‐gly­cosyl bond is intermediate between anti and high anti [χ = −103.5 (3)°]. The ribo­furan­ose moiety adopts a 3T2 sugar pucker (S‐type sugar) and the conformation at the exocyclic C—C bond is ap (gauchetrans). Molecules of the title compound form a three‐dimensional network via three medium–strong intermolecular hydrogen bonds (one O—H⋯N and two O—H⋯O bonds).  相似文献   

8.
In the title compound, C17H20N2O3, the cyclo­butane ring is puckered, with a dihedral angle of 19.11 (15)°. The 1‐phenyl and 3‐[1‐hydroxy­imino‐2‐(succinimido)­ethyl] groups are in cis positions. The mol­ecules are linked by O—H⋯O and C—H⋯π(benzene) interactions, forming a two‐dimensional network.  相似文献   

9.
The crystal structures of the title compounds, 2α,4α‐di­benzyl‐3α‐tropanol (2α,4α‐di­benzyl‐8‐methyl‐8‐aza­bi­cyclo­[3.2.1]­octan‐3α‐ol), C22H27NO, (I), and 2α,4α‐di­benzyl‐3β‐tropanol (2α,4α‐di­benzyl‐8‐methyl‐8‐aza­bi­cyclo­[3.2.1]­octan‐3β‐ol), C22H27NO, (II), show that both compounds have a piperidine ring in a chair conformation and a pyrrolidine ring in an envelope conformation. Isomer (I) is asymmetric, the benzyl groups having different orientations, whereas isomer (II) is mirror symmetric, and the N and O atoms, the C atom attached to the hydroxy group, and the methyl C atom attached to the N atom lie on the mirror plane. In the crystal structures of both (I) and (II), the mol­ecules are linked together by intermolecular O—H⋯N hydrogen bonds to form chains that run parallel to the a direction in (I) and parallel to b in (II).  相似文献   

10.
The title compound, C25H17F2N3OS, was synthesized from 6‐(benzyl­idene)­thia­zolo­[3,2‐b][1,2,4]triazol‐5(6H)‐one. The fused thia­zolo­[3,2‐b][1,2,4]triazole system is essentially planar, and bifurcated C—H⋯O, C—H⋯N and C—H⋯F interactions are present between mol­ecules.  相似文献   

11.
In the title compound, C29H36O2, the outer cyclohexene ring of the steroid nucleus has a conformation that lies about half‐way between a half‐chair and an envelope, while the central and outer cyclo­hexane rings of the steroid nucleus have slightly distorted chair conformations. The steroidal cyclo­pentane ring adopts a 13β,14α‐half‐chair conformation. The benzyl­idene moiety has an E configuration with respect to the carbonyl group on the cyclo­pentane ring. The dihedral angle between the mean planes of the steroid nucleus and the benzyl­idene moiety is 35.54 (9)°. The packing of the mol­ecules is assumed to be dictated mainly by weak intermolecular C—H⋯O interactions.  相似文献   

12.
In the title compounds, C18H20N2O2, (I), and C14H11N3O4·0.5H2O, (II), respectively, the oxime groups have an E configuration. In (I), the mol­ecules exist as polymers bound by intermolecular C—H⋯O and O—H⋯N hydrogen bonds around inversion centres. In (II), intermolecular OW—H⋯N, OW—H⋯O and O—H⋯OW interactions stabilize the molecular packing.  相似文献   

13.
The molecular structure of the title tricyclic compound, C17H21NO4, which is the immediate precursor of a potent synthetic inhibitor {Lek157: sodium (8S,9R)‐10‐[(E)‐ethyl­idene]‐4‐methoxy‐11‐oxo‐1‐aza­tri­cyclo­[7.2.0.03,8]­undec‐2‐ene‐2‐carboxyl­ate} with remarkable potency, provides experimental evidence for the previously modelled relative position of the fused cyclo­hexyl ring and the carbonyl group of the β‐lactam ring, which takes part in the formation of the initial tetrahedral acyl–enzyme complex. In this hydro­phobic mol­ecule, the overall geometry is influenced by C—H?O intramolecular hydrogen bonds [3.046 (4) and 3.538 (6) Å, with corresponding normalized H?O distances of 2.30 and 2.46 Å], whereas the mol­ecules are interconnected through intermolecular C—H?O hydrogen bonds [3.335 (4)–3.575 (5) Å].  相似文献   

14.
The crystals of the title salt, 6,21‐di­aza‐3,9,18,24‐tetraazoniatri­cyclo­[22.2.2.211,14]­triaconta‐11,13,24,26(1),27,29‐hexaene benzene‐1,2,4,5‐tetra­carboxyl­ate(4?) hexahydrate, C24H42N64+·C10H2O84?·6H2O, are formed by the intermolecular interaction of a macrocyclic hex­amine with a mol­ecule of C6H2(COOH)4 in aqueous solution. Both the cation and the anion are on inversion centres. Hydro­gen bonds are formed between the four ammonium cations in the hex­amine and the four carboxyl­ate anions in the aromatic acid. Stacks exist along the crystallographic a axis in the solid state. The water mol­ecules also take part in a hydrogen‐bonding network which joins these stacks together.  相似文献   

15.
In the title compound, C6H12O4·H2O, 1,4/2,5‐cyclo­hexane­tetrol and water mol­ecules are seen to possess twofold symmetry. All four hydrox­yl groups of the tetrol participate in extensive inter­molecular O—H⋯O hydrogen bonding to form mol­ecular tapes propagating along the a axis. Translationally related tapes along the c axis are held together by four coordinated water mol­ecules.  相似文献   

16.
Both 7‐carboxyl­ato‐8‐hydroxy‐2‐methyl­quinolinium monohydrate, C11H9NO3·H2O, (I), and 7‐carboxy‐8‐hydroxy‐2‐methyl­quinolinium chloride monohydrate, C11H10NO3+·Cl·H2O, (II), crystallize in the centrosymmetric P space group. Both compounds display an intramolecular O—H⋯O hydrogen bond involving the hydroxy group; this hydrogen bond is stronger in (I) due to its zwitterionic character [O⋯O = 2.4449 (11) Å in (I) and 2.5881 (12) Å in (II)]. In both crystal structures, the HN+ group participates in the stabilization of the structure via intermolecular hydrogen bonds with water mol­ecules [N⋯O = 2.7450 (12) Å in (I) and 2.8025 (14) Å in (II)]. In compound (II), a hydrogen‐bond network connects the Cl anion to the carboxylic acid group [Cl⋯O = 2.9641 (11) Å] and to two water mol­ecules [Cl⋯O = 3.1485 (10) and 3.2744 (10) Å].  相似文献   

17.
Due to steric repulsions, the cyclo­hexane ring in the title compound, C23H24N2O5·H2O, shows some bond‐length abnormalities and adopts a chair conformation. The pyrimidine and cyclo­hexane rings are approximately perpendicular to each other, and the phenyl rings are equatorial. C—H?π and N—H?O intermolecular interactions, as well as C—H?O inter‐ and intramolecular interactions, occur between the mol­ecules. In addition to van der Waals interactions, the water mol­ecule interacts with the pyrimidine­trione ring to stabilize the structure.  相似文献   

18.
The structure of the title compound, C18H20ClN3O5, displays the characteristic features of azo­benzene derivatives. Intramolecular N—H⋯O, weak intramolecular C—H⋯O, and intermolecular O—H⋯O and C—H⋯O interactions influence the conformation of the mol­ecules and the crystal packing. Intermolecular hydrogen bonds link the mol­ecules into infinite chains, and the title compound adopts the keto–amine tautomeric form. The azo­benzene moiety of the mol­ecule has a trans configuration. The mol­ecule is not planar, and the dihedral angle between the two phenyl rings is 35.6 (2)°.  相似文献   

19.
In the crystal structure of the title dopamine­rgic compound, C16H24NO2+·Br·H2O, protonation occurs at the piperidine N atom. The piperidine ring adopts a chair conformation and the cyclo­hexene ring adopts a half‐chair conformation; together with the planar benzene ring, this results in a relatively planar shape for the whole mol­ecule. Classical hydrogen bonds (N—H⋯Br, O—H⋯Br and O—H⋯O) produce an infinite three‐dimensional network. Hydrogen bonds between water ­mol­ecules and Br anions create centrosymmetric rings throughout the crystal structure. Structural comparison of the mol­ecule with the ergoline dopamine agonist pergolide shows that it is the hydrogen‐bond‐forming hydr­oxy or imino group that is necessary for dopamine­rgic activity, rather than the presence of a phenyl or a pyrrole ring per se.  相似文献   

20.
The asymmetric unit of the title compound, C25H30FN3O·0.5CH3OH, contains four symmetry‐independent steroid and two methanol mol­ecules. The conformations of the independent steroid mol­ecules are very similar. Intermolecular O—H⋯O hydrogen bonds create two independent chains, each of which links two of the independent steroid mol­ecules plus one methanol mol­ecule via a co‐operative O—H⋯O—H⋯O—H pattern. Intermolecular C—H⋯O and C—H⋯F interactions are also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号