首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 2‐hydroxy‐3‐iodo‐5‐nitro­benz­aldehyde, C7H4INO4, the mol­ecules are linked into sheets by a combination of C—H⋯O hydrogen bonds and two‐centre iodo–nitro interactions, and these sheets are linked by aromatic π–π stacking interactions. Molecules of 2,4‐di­iodo‐6‐nitro­anisole, C7H5I2NO3, are disordered, with the nitro group and one of the I substituents each occupying common sets of sites with 0.5 occupancy. The mol­ecules are linked into isolated centrosymmetric dimeric units by a single iodo–nitro interaction.  相似文献   

2.
In 2,6‐di­iodo‐4‐nitro­phenol, C6H3I2NO3, the mol­ecules are linked, by an O—H?O hydrogen bond and two iodo–nitro interactions, into sheets, which are further linked into a three‐dimensional framework by aromatic π–π‐stacking interactions. The mol­ecules of 2,6‐di­iodo‐4‐nitro­phenyl acetate, C8H5I2NO4, lie across a mirror plane in space group Pnma, with the acetyl group on the mirror, and they are linked by a single iodo–nitro interaction to form isolated sheets. The mol­ecules of 2,6‐di­iodo‐4‐nitro­anisole, C7H5I2NO3, are linked into isolated chains by a single two‐centre iodo–nitro interaction.  相似文献   

3.
In 2‐amino‐4,6‐di­methoxy‐5‐nitro­pyrimidine, C6H8N4O4, the mol­ecules are linked by one N—H⋯N and one N—H⋯O hydrogen bond to form sheets built from alternating R(8) and R(32) rings. In isomeric 4‐amino‐2,6‐di­methoxy‐5‐nitro­pyrimidine, C6H8N4O4, which crystallizes with Z′ = 2 in P, the two independent mol­ecules are linked into a dimer by two independent N—H⋯N hydrogen bonds. These dimers are linked into sheets by a combination of two‐centre C—H⋯O and three‐centre C—H⋯(O)2 hydrogen bonds, and the sheets are further linked by two independent aromatic π–π‐stacking interactions to form a three‐dimensional structure.  相似文献   

4.
In the triclinic polymorph of 2‐iodo‐4‐nitro­aniline, C6H5IN2O2, space group P, the mol­ecules are linked by paired N—­H?O hydrogen bonds into C(8)[R(6)] chains of rings. These chains are linked into sheets by nitro?I interactions, and the sheets are pairwise linked by aromatic π–π‐stacking interactions. In the orthorhombic polymorph, space group Pbca, the mol­ecules are linked by single N—H?O hydrogen bonds into spiral C(8) chains; the chains are linked by nitro?O interactions into sheets, each of which is linked to its two immediate neighbours by aromatic π–π‐stacking inter­actions, so producing a continuous three‐dimensional ­structure.  相似文献   

5.
In ethyl N‐[2‐(hydroxy­acetyl)phenyl]carbamate, C11H13NO4, all of the non‐H atoms lie on a mirror plane in the space group Pnma; the mol­ecules are linked into simple chains by a single C—H⋯O hydrogen bond. The mol­ecules of ethyl N‐[2‐(hydroxy­acetyl)‐4‐iodo­phenyl]carbamate, C11H12INO4, are linked into sheets by a combination of O—H⋯I and C—H⋯O hydrogen bonds and a dipolar I⋯O contact. Ethyl N‐­[2‐(hydroxy­acetyl)‐4‐methyl­phenyl]carbamate, C12H15NO4, crystallizes with Z′ = 2 in the space group P; pairs of mol­ecules are weakly linked by an O—H⋯O hydrogen bond and these aggregates are linked into chains by two independent aromatic π–π stacking inter­actions.  相似文献   

6.
The crystal structure of 1‐chloro‐2‐nitro­benzene, C6H4ClNO2, is made up of mol­ecules which are linked by N—O⋯Cl halogen bonds. These mol­ecular chains are involved in aromatic π–π stacking; the inter­molecular O⋯Cl distance is 3.09 Å. Such short halogen bonds are not common. A rigid‐body analysis including the non‐rigidly attached rigid group provides the mean‐square amplitudes of the mol­ecular translations and librations, and of the inter­nal torsional vibrations of the nitro group. The results reveal the driving role of the torsional vibrations of the nitro group in the phase transition to the liquid phase.  相似文献   

7.
The crystal structures of the four E,Z,E isomers of 1‐(4‐alk­oxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, namely (E,Z,E)‐1‐(4‐methoxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, C19H17NO3, (E,Z,E)‐1‐(4‐ethoxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, C20H19NO3, (E,Z,E)‐1‐(4‐nitro­phen­yl)‐6‐(4‐n‐propoxyphen­yl)hexa‐1,3,5‐triene, C21H21NO3, and (E,Z,E)‐1‐(4‐n‐butoxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, C22H23NO3, have been determined. Inter­molecular N⋯O dipole inter­actions between the nitro groups are observed for the meth­oxy derivative, while for the eth­oxy derivative, two adjacent mol­ecules are linked at both ends through N⋯O dipole–dipole inter­actions between the N atom of the nitro group and the O atom of the eth­oxy group to form a supra­molecular ring‐like structure. In the crystal structures of the n‐prop­oxy and n‐but­oxy derivatives, the shortest inter­molecular distances are those between the two O atoms of the alk­oxy groups. Thus, the nearest two mol­ecules form an S‐shaped supra­molecular dimer in these crystal structures.  相似文献   

8.
In 2‐iodo‐N‐(3‐nitro­benzyl)­aniline, C13H11IN2O2, the mol­ecules are linked into a three‐dimensional structure by a combination of C—H?O hydrogen bonds, iodo–nitro interactions and aromatic π–π‐stacking interactions, but N—H?O and C—H?π(arene) hydrogen bonds are absent. In the isomeric 3‐iodo‐N‐(3‐nitro­benzyl)­aniline, a two‐dimensional array is generated by a combination of N—H?O, C—H?O and C—H?π(arene) hydrogen bonds, but iodo–nitro interactions and aromatic π–π‐stacking interactions are both absent.  相似文献   

9.
N,N′‐Di­thio­bisphthal­imide crystallizes from nitro­benzene solution as a solvate, 2C16H8N2O4S2·C6H5NO2, having space group Pn. The bisphthal­imide mol­ecules are linked by C—H?O hydrogen bonds and by aromatic π–π‐stacking interactions, forming a framework enclosing continuous channels running along the [100] direction and accounting for ca 20% of the unit‐cell volume. The nitro­benzene mol­ecules lie in these channels, ordered in a head‐to‐tail fashion and linked to the bis­phthal­imide framework by C—H?O and C—H?π(arene) hydrogen bonds.  相似文献   

10.
The crystal structure of the title compound, C15H17NO2, contains two nearly identical but crystallographically independent mol­ecules, each with a double bond connecting an aza­bicyclic ring system to a 3‐methoxy­benzyl­idene moiety. The space group is triclinic P. The benzene ring is twisted by 18.44 (5) and 22.35 (4)° with respect to the plane of the double bond connected to the azabicyclic ring system for the two mol­ecules. In addition to C—H⋯π inter­actions, mol­ecules are held together in the solid state by van der Waals inter­actions.  相似文献   

11.
The crystal structure of the title compound, alternatively called 1,2,3‐triiodo‐5‐(triphenylmethyl)benzene, C25H17I3, is analysed in terms of I⋯I and I⋯π interactions and the herring‐bone T motif between phenyl groups. There are two mol­ecules in the asymmetric unit, denoted A and B. Inversion‐related A mol­ecules are connected via an I⋯π interaction (3.641 Å, to a C—C bond mid‐point) to form an I⋯π dimer, and these dimers are connected through symmetry‐independent B mol­ecules via I⋯I [3.5571 (15) Å] and I⋯π (3.561 Å, to a C—C bond mid‐point) interactions.  相似文献   

12.
The structure of the title compound, C18H20ClN3O5, displays the characteristic features of azo­benzene derivatives. Intramolecular N—H⋯O, weak intramolecular C—H⋯O, and intermolecular O—H⋯O and C—H⋯O interactions influence the conformation of the mol­ecules and the crystal packing. Intermolecular hydrogen bonds link the mol­ecules into infinite chains, and the title compound adopts the keto–amine tautomeric form. The azo­benzene moiety of the mol­ecule has a trans configuration. The mol­ecule is not planar, and the dihedral angle between the two phenyl rings is 35.6 (2)°.  相似文献   

13.
Crystals of the title compound, [Zn(C45H28N4O2)(H2O)]·2C6H5NO2, consist of multiporphyrin supra­molecular assemblies sustained by inter­molecular COOH⋯COOH and Zn(H2O)⋯COOH hydrogen bonds. One of the two nitro­benzene solvent mol­ecules hydrogen bonds peripherally to these arrays.  相似文献   

14.
Two chemical isomers of 3‐nitro­benzotrifluoride, namely 1‐(4‐chloro­phenyl­sulfanyl)‐2‐nitro‐4‐(tri­fluoro­methyl)­benzene, C13H7ClF3NO2S, (I), and 1‐(4‐chloro­phenyl­sulfanyl)‐4‐nitro‐2‐(tri­fluoro­methyl)­benzene, C13H7ClF3NO2S, (II), have been prepared and their crystal structures determined with the specific purpose of forming a cocrystal of the two. The two compounds display a similar conformation, with dihedral angles between the benzene rings of 83.1 (1) and 76.2 (1)°, respectively, but (I) packs in P while (II) packs in P21/c, with C—H⋯O interactions. No cocrystal could be formed, and it is suggested that the C—H⋯O associations in (II) prevent intermolecular mixing and promote phase separation.  相似文献   

15.
In the title compound 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐piperidone, C22H23NO3, (I), the central heterocyclic ring adopts a flattened boat conformation, while in the related salt 3,5‐bis(4‐methoxy­benzyl­idene)‐1‐methyl‐4‐oxopiperidin­ium chloride, C22H24NO3+·Cl, (II), the ring exhibits a `sofa' conformation in which the N atom deviates from the planar fragment. The pendant benzene rings are twisted from the heterocyclic ring planes in both mol­ecules in the same direction, the range of dihedral angles between the ring planes being 24.5 (2)–32.7 (2)°. The dominant packing motif in (I) involves centrosymmetric dimers bound by weak intermolecular C—H⋯O hydrogen bonds. In (II), cations and anions are linked by strong N—H⋯Cl hydrogen bonds, while weak C—H⋯O and C—H⋯Cl hydrogen bonds link the cations and anions into a three‐dimensional framework.  相似文献   

16.
In the title compound, C17H20N2O3, the cyclo­butane ring is puckered, with a dihedral angle of 19.11 (15)°. The 1‐phenyl and 3‐[1‐hydroxy­imino‐2‐(succinimido)­ethyl] groups are in cis positions. The mol­ecules are linked by O—H⋯O and C—H⋯π(benzene) interactions, forming a two‐dimensional network.  相似文献   

17.
Molecular packing analyses were carried out on 15 crystal data sets of chloro‐substituted Schiff bases, including that of the title compound, C15H15ClN2. C—H⋯π and π–π interactions play a major role in the molecular self‐assembly in the crystal. The former interactions favor mol­ecules assembling into a screw, with a non‐centrosymmetric crystal structure. When the molecular dipole is small, π–π interactions favor a parallel, but not usually antiparallel, mode of packing. Weak C—H⋯X hydrogen bonds (X = Cl or Br) and XX interactions seem to be a secondary driving force in packing. The title mol­ecule takes the trans form and the two benzene rings are twisted around the central linkage in opposite directions. In the crystal structure, mol­ecules interact through C—H⋯π and π–π interactions, forming a `dimer' and further forming double chains along [001]. The double chains are extended along [10] through C—H⋯Cl hydrogen bonds, forming double layers in (010). In the third direction, there are only ordinary, weaker, van der Waals interactions, which explains the crystal habit (i.e. thin plate).  相似文献   

18.
The title compounds, both C13H11NO3, exist as the keto–amine tautomers, and the formal hydroxyl H atoms, which display strong intramolecular hydrogen bonds, are located on the N atoms. This is a verification of the preference for the keto–amine tautomeric form in the solid state. The 2‐hydroxy isomer has two independent mol­ecules, with the mol­ecules linked by intramolecular N—H⋯O and O—H⋯O and intermolecular O—H⋯O hydrogen bonds into three‐dimensional networks.  相似文献   

19.
The asymmetric unit of the title compound, C10H8O2, contains two planar symmetry‐independent mol­ecules linked by an O—H⋯O hydrogen bond. In the crystal structure, mol­ecules are linked into infinite chains of rings, formed by a combination of O—H⋯O and C—H⋯O hydrogen bonds, and additionally reinforced by π–π stacking inter­actions. Adjacent chains are connected by weak C—H⋯π inter­actions.  相似文献   

20.
In the title compound, C28H30BrN3O4, the mol­ecules are linked by C—H⋯Br and N—H⋯O hydrogen bonds into one‐dimensional chains, which are arranged into a three‐dimensional network through a combination of C—H⋯O hydrogen bonds and two kinds of π–π inter­actions between the benzene rings of the anthraquinone units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号