首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
阐述了120k J高温超导储能磁体的高温超导带选择及磁体主要参数。为确定120k J高温超导储能磁体绕组的通电方式,比较了30个高温超导双饼线圈两种连接方式在225A电流下的磁场特性。为满足杜瓦强度要求,针对120k J高温超导储能磁体杜瓦开展了结构设计及强度分析,结果表明,杜瓦满足高温超导绕组吊挂对其强度的要求。  相似文献   

2.
超导储能磁体是超导储能系统(SMES)的关键部件,因此有必要在SMES系统运行前对超导储能磁体进行系统试验研究.本文以第二代高温超导(YBCO)线材设计制作的超导储能磁体为试验对象,通过降温试验、临界电流测试、储能量测试和对地绝缘测试等试验测试并分析了超导储能磁体的电气和低温绝缘性能.试验结果表明:超导储能磁体基本性能...  相似文献   

3.
300MJ环状高温超导储能磁体的优化设计   总被引:1,自引:0,他引:1  
介绍了300M J环状高温超导储能磁体优化设计的步骤。为了提高优化设计的效率,减少常规寻优方法的计算量,将改进的粒子群优化算法引入到高温超导储能磁体的优化设计中,给出了用B i-2223超导线材进行300M J环状储能磁体设计的优化结果,并采用商用电磁场有限元分析软件ANSYS对本文关于环状螺线管系统磁场、能量计算方法的正确性进行了验证。  相似文献   

4.
高温超导储能(High Temperature Superconducting Magnetic Energy Storage,HTS-SMES)磁体装置可有效提高电力系统的稳定性、改善电能质量。储能磁体是储能装置的关键部分,为提高超导储能磁体的热稳定性,通常在超导磁体中增设铜导冷片。磁体充放电时在导冷片上会产生涡流损耗,损耗的大小严重影响磁体的超导特性,因此降低导冷结构的涡流损耗是提高磁体热稳定性的关键因素。运用有限元法(FEM)分析导冷片上的涡流损耗,在Ansoft仿真软件三维瞬态场中模拟磁体充电过程中导冷片的涡流损耗,结果表明:充电模式下,完整导冷片涡流损耗为1.45W;沿径向开缺口处理后涡流损耗为0.107W;导冷片内环、中部、外环开齿槽后涡流损耗分别为0.49、0.41、0.1242W。由此可得,对于导冷片的开齿槽处理可显著降低涡流损耗,且内部开齿槽的效果最佳。  相似文献   

5.
随着高储能量的高温超导储能磁体在电力系统中的应用日益广泛,对高储能量磁体周围漏磁场的屏蔽愈加重要.本文利用有限元仿真软件ANSYS分析了储能量为2.5MJ的高温超导磁体周围的漏磁场分布,并对其进行同轴嵌套式主动屏蔽.根据理论计算确定屏蔽磁体的几何尺寸和应加载的电流密度,并对四个不同几何参数的嵌套式屏蔽磁体进行仿真分析,最终确定了效果较好的屏蔽方案.  相似文献   

6.
针对在高温超导储能磁体设计中多物理场耦合分析问题,本文提出了一种面向有限元分析的解耦优化设计方法,并以一台150kJ/100kW高温超导磁储能磁体为例进行了有限元仿真验证。本文首先梳理了高温超导储能磁体的多场耦合关系,提出在材料物性关系和多场耦合关系中分别以温度和电磁场为主导因素;进而归纳得出,磁体易失超危险区分布及解耦分析中多物理场数据流向设计,是设计过程中的关键问题,并给出了分析策略;最后按照逻辑合理、工作量最省的原则提出了解耦综合优化主流程,及针对易失超危险区的优化建议。  相似文献   

7.
降低超导储能磁体的研制成本一直是控制超导磁储能系统(Superconducting Magnetic Energy Storage, SMES)总成本的重要手段之一.本文考虑在一定磁体结构参数范围内,磁体产生的最大磁场值可以采用级数进行表示,磁体的电感值可以采用线性函数表示,给出了超导储能磁体磁场能量的近似解析表达式,提出了一种基于近似解析法的超导储能磁体设计方法.该方法以储能磁体的线材用量最小作为设计目标,在给定超导线材参数和临界电流特性曲线,以及磁体储能总量要求的情况下,依据此方法可快速的得到成本最优时所对应的磁体结构参数.将近似解析法优化和采用传统的有限元软件Ansys仿真优化进行对比分析,结果表明采用近似解析法进行磁体优化更加方便快捷,节省了大量计算时间.  相似文献   

8.
高温超导储能应用研究的新进展   总被引:7,自引:0,他引:7  
简要回顾了用于高温超导储能磁体的高温超导磁体材料的性能;重点介绍了近年来几种类型的高温超导储能磁体的研究新进展;然后分别介绍了Bi-2212和Bi-2223高温超导储能磁体的研究情况;最后简述了将来可能用YB-CO(或NdBCO)涂层导体材料设计在液氮温区运行的高温超导储能磁体。  相似文献   

9.
10.
为提高区域电网整体调频能力,满足电网稳定性要求,将高温超导环形储能磁体应用到电网进行AGC调频服务。本文首先建立了参与电网AGC调频服务的高温超导环形储能磁体模型,并提出了储能系统的成本模型、补偿效益模型及净收益模型,然后在调频储能电站净收益最大化控制策略的约束条件下,基于电网实际下发的典型日某时段AGC指令,对净收益模型进行时序仿真,求解净收益的最优值。最后针对不同容量、不同使用寿命的储能系统进行了经济性评估,为高温超导储能磁体系统的调频规划、高效经济运行提供有效参考。  相似文献   

11.
微型超导储能系统(SMES)可用于改善电能质量和电力系统的动态稳定性,但在应用中需满足漏磁场的要求,本文主要以储能量为1MJ的超导储能磁体为例,结合多种有源屏蔽型超导储能磁体的结构特点,主要包括轴线平行、组合式环型,研究了有源屏蔽微型超导储能磁体的方案.对以上这两种类型的超导储能磁体进行了优化设计,并对优化结果进行了比较分析.  相似文献   

12.
本文介绍了一种由准各向同性股线(Q-IS)和直接堆叠带材导体(STC)绕制而成的高温超导储能磁体。计算了磁体的临界电流,得到了临界电流密度分布,在绝热近似下分析了磁体的最小失超能(MQE)和失超传播速度(QPV)等热稳定性能。结果表明,STC绕制的磁体临界电流更大,而Q-IS制成的磁体临界电流密度分布均匀性具有明显优势,当归一化电流i=0.6、0.7、0.8、0.9时,Q-IS绕制的磁体的MQE分别是STC绕制磁体的1.15、1.22、1.42、3倍。对于失超传播速度(QPV),Q-IS绕制的磁体的仿真值大约是STC绕制磁体仿真值的82%~92%。  相似文献   

13.
高温超导储能磁体几何参数的优化   总被引:1,自引:0,他引:1  
对于高温超导储能磁体的设计,必须在保证磁体性能满足设计要求的前提下,对磁体的几何参数进行优化,以达到减小导线使用量和提高磁体性能的目的.文中介绍对双饼单螺管高温超导储能磁体,根据磁体性能随双饼数目的变化关系的计算进行磁体设计参数优化的方法.  相似文献   

14.
微型超导储能系统(SMES)可用于改善电能质量和电力系统的动态稳定性,但在应用中需满足漏磁场的要求,本文主要以储能量为1MJ的超导储能磁体为例,结合多种有源屏蔽型超导储能磁体的结构特点,主要包括轴线平行、组合式环型,研究了有源屏蔽微型超导储能磁体的方案.对以上这两种类型的超导储能磁体进行了优化设计,并对优化结果进行了比较分析.  相似文献   

15.
电磁优化设计在高温超导磁体的设计中占有至关重要的地位。文中应用MATLAB中的遗传算法工具箱并结合ANSYS有限元仿真计算,对高温超导储能磁体进行了电磁优化设计,给出了用AMSC公司生产的YBCO带材进行储能量为5kJ的环型磁体的电磁优化设计的结果,并对优化设计的结果进行了分析和总结。  相似文献   

16.
临界电流值是描述Bi2223高温超导带材性能的一个基本参数,在一定的温度条件下,Bi2223高温超导带材的临界电流是带材所在位置磁场大小和磁场方向的函数,其短样的临界电流值可以通过四引线法测量,单根超导带材的自场很小,磁场对临界电流的影响可以忽略.高温超导磁体的临界电流被定义成引发该磁体失超的最小电流,高温超导磁体的自场比单根超导带材的自场要大得多,磁体各个位置的磁场大小和方向各不相同,很难用理论的方法准确计算磁体的临界电流.对于高温超导磁体而言,除了磁场的影响因素以外,绕制磁体所用的超导带材自身的均匀性也是影响其临界电流的一个重要因素.本文对这两个因素进行探讨,并着重讨论高温超导带材自身的均匀性对临界电流大小的影响,本文的结论可以为高温超导磁体的设计、磁体绕制时带材的选择、磁体运行时安全工作电流的确定提供帮助.  相似文献   

17.
介绍了直接冷却高温超导储能磁体的基本结构,分析了磁体的电磁特性,分析结果表明,磁体电磁设计中采用端部两对饼并联的方式,削弱了磁体端部磁场径向分量,提高临界电流,磁体表现了较好的电磁特性;仿真了磁体与电力系统进行功率交换时的热特性,仿真结果与实验结果两者温度变化总体趋势是一致的;介绍了磁体的冷却实验和磁体系统的动态模拟实验结果.实验结果表明磁体的冷却措施和低温系统的冷却方案是可行的,磁体具有较好的热稳定性.  相似文献   

18.
高温超导磁浮列车运行在高速状态,要受到环境振动、电磁激扰、轨道不平顺等问题,由此带来的运行损耗与高温超导接头电阻损耗等自身损耗相互叠加,使得高温超导磁体难以实现恒流运行.因此,本文基于近年来快速发展的非接触传能技术,提出了一种无漏热高温超导磁体非接触补偿供电方案,从理论上建立等效电路模型进行阻抗匹配,确定系统最优参数,同时利用搭建的实验测试平台研究了不同传输间距、不同负载的供电效率,证实了非接触传能技术用于现代轨道交通中高温超导磁体供电补偿的可行性.  相似文献   

19.
根据电力系统对超导储能(SMES)装置的要求,并针对中国电力科学研究院制备的YBCO和BSCCO超导储能磁体失超的特点,作者研制了一套数字式失超保护装置.该装置采用数字信号处理技术(DSP)进行算法实现,通过对失超触发事件进行处理来控制保护电路的动作;同时,进行人机界面的开发,用于监测工作环境、失超保护电路及超导磁体的工作状态.最终,该装置通过了SMES系统动模试验,从而验证了其有效性.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号