首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Electromagnetic waves carry the Abraham momentum, whose density is given by pEM = S(r,t) / c2. Here S(r,t) = E(r,t) × H(r,t) is the Poynting vector at point r in space and instant t in time, E and H are the local electromagnetic fields, and c is the speed of light in vacuum. The above statement is true irrespective of whether the waves reside in vacuum or within a ponderable medium, which medium may or may not be homogeneous, isotropic, transparent, linear, magnetic, etc. When a light pulse enters an absorbing medium, the force experienced by the medium is only partly due to the absorbed Abraham momentum. This absorbed momentum, of course, is manifested as Lorentz force (while the pulse is being extinguished within the absorber), but not all the Lorentz force experienced by the medium is attributable to the absorbed Abraham momentum. We consider an absorptive/reflective medium having the complex refractive index n2 + iκ2, submerged in a transparent dielectric of refractive index n1, through which light must travel to reach the absorber/reflector. Depending on the impedance-mismatch between the two media, which mismatch is dependent on n1, n2, κ2, either more or less light will be coupled into the absorber/reflector. The dependence of this impedance-mismatch on n1 is entirely responsible for the appearance of the Minkowski momentum in certain radiation pressure experiments that involve submerged objects.  相似文献   

2.
The classical theory of electromagnetism is based on Maxwell's macroscopic equations, an energy postulate, a momentum postulate, and a generalized form of the Lorentz law of force. These seven postulates constitute the foundation of a complete and consistent theory, thus eliminating the need for physical models of polarization P and magnetization M — these being the distinguishing features of Maxwell's macroscopic equations. In the proposed formulation, P(r, t) and M(r, t) are arbitrary functions of space and time, their physical properties being embedded in the seven postulates of the theory. The postulates are self-consistent, comply with special relativity, and satisfy the laws of conservation of energy, linear momentum, and angular momentum. The Abraham momentum density pEM(r,t) = E(r,t) × H(r,t) / c2 emerges as the universal electromagnetic momentum that does not depend on whether the field is propagating or evanescent, and whether or not the host media are homogeneous, transparent, isotropic, linear, dispersive, magnetic, hysteretic, negative-index, etc. Any variation with time of the total electromagnetic momentum of a closed system results in a force exerted on the material media within the system in accordance with the generalized Lorentz law.  相似文献   

3.
This paper presents an analytical and numerical investigation of an intense circularly polarized wave propagating along the static magnetic field parallel to oscillating magnetic field in magnetoactive plasma. In the relativistic regime such a magnetic field is created by pulse itself. The authors have studied different regimes of propagation with relativistic electron mass effect for magnetized plasma. An appropriate expression for dielectric tensor in relativistic magnetoactive plasma has been evaluated under paraxial theory. Two modes of propagation as extraordinary and ordinary exist; because of the relativistic effect, ultra-strong magnetic fields are generated which significantly influence the propagation of laser beam in plasma. The nature of propagation is characterized through the critical-divider curves in the normalized beam width with power plane For given values of normalized density (ωp/ω) and magnetic field (ωc/ω) the regions are namely steady divergence (SD), oscillatory divergence (OD) and self-focusing (SF). Numerical computations are performed for typical parameters of relativistic laser-plasma interaction: magnetic field B = 10-100 MG; intensity I = 1016 to 1020 W/cm2; laser frequency ω = 1.1 × 1015 s−1; cyclotron frequency ωc = 1.7 × 1013 s−1; electron density ne = 2.18 × 1020 cm−3. From the calculations, we confirm that a circularly polarized wave can propagate in different regimes for both the modes, and explicitly indicating enhancement in wave propagation, beam focusing/self-guiding and penetration of E-mode in presence of magnetic field.  相似文献   

4.
NMR diffusion–diffraction patterns observed in compartments in which restricted diffusion occurs are a useful tool for direct extraction of compartment sizes. Such diffusion–diffraction patterns may be observed when the signal intensity E(q,?) is plotted against the wave-vector q (when q = (2π)− 1γδG). However, the smaller the compartment sizes are, the higher are the q-values needed to observe such diffractions. Moreover, these q-values should be achieved using short gradient pulses requiring extremely strong gradient systems. The angular double-pulsed-field gradient (d-PFG) NMR methodology has been proposed as a tool to extract compartment sizes using relatively low q-values. In this study, we have used single-PFG (s-PFG) NMR and angular d-PFG NMR to characterize the size of microcapillaries of about 2 ± 1 μm in diameter. We found that these microcapillaries are characterized by relatively strong background gradients that completely masked the effects of the microscopic anisotropy (μA) of the sample, resulting in a completely unexpected E(φ) profile in the angular d-PFG NMR experiments. We also show that bipolar angular d-PFG NMR experiments can largely suppress the effect of these background gradients resulting in the expected E(φ) profile from which the compartment dimensions could be obtained with relatively weak gradient pulses. These results demonstrate that the above methodology provides a quick, reliable, non-invasive means for estimating small pore sizes with relatively weak gradients in the presence of large magnetic susceptibility.  相似文献   

5.
The molecular charge complex urea picrate (UP) was synthesized and its third order nonlinear optical properties have been investigated using a single beam Z-scan technique with nanosecond laser pulses at 532 nm. Open aperture data of the compound indicates two photon absorption at this wavelength. The nonlinear refractive index n2, nonlinear absorption coefficient β, magnitude of effective third order susceptibility χ(3), the second order hyperpolarizability γh and the coupling factor ρ have been estimated. The experimentally determined values of β, n2, Re χ(3) and Im χ(3), γh and ρ of the compound UP are 2.146 cm/GW, −1.258×10−11 esu, −1.347×10−13 esu, 0.377×10−13 esu, 0.69×10−32 esu and 0.28, respectively. The compound exhibits good optical limiting at 532 nm with the limiting threshold of 80 μJ/pulse. Our studies suggest that compound UP is a potential candidate for optical device applications such as optical limiters.  相似文献   

6.
Nanoparticles of a two-dimensional coordination polymer, {[Pb(L)(μ1,1-NCS)(H2O)]}n (1), (L = 1H-1,2,4-triazole-3-carboxylate), have been synthesized by a sonochemical process and characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. The thermal stability of compound 1 both its bulk and nano-size has been studied by thermal gravimetric (TG) and differential thermal (DTA) analyses and compared each other. Concentration of initial reagents effects and the role of power ultrasound irradiation on size and morphology of nano-structured compound 1, have been studied. Calcination of the single crystals and nano-sized compound 1 at 400 °C under air atmosphere yields mixture of PbS and Pb2(SO4)O nanoparticles. Results show that the size and morphology of the PbS and Pb2(SO4)O nanoparticles are dependent upon the particles size of compound 1. A decrease in the particles size of compound 1 leads to a decrease in the particles size of the PbS and Pb2(SO4)O.  相似文献   

7.
具有广义协变的包含重力场贡献的重力场方程   总被引:1,自引:0,他引:1       下载免费PDF全文
娄太平 《物理学报》2006,55(4):1602-1606
利用半度规λ(α)μ表象的数学工具定义一个对广义坐标具有协变形式的重力场矢势函数ω(α)μ≡-cλ(α)μ,给出一个具有广义协变的包含重力场贡献的重力场方程Rμν-gμνR/2+Λgμν=8πG(T(Ⅰ)μν+T(Ⅱ)μν) 关键词: 重力场方程 协变形式 能量-动量张量 量子化  相似文献   

8.
A new molecular solid, [1-(4′-bromo-2′-fluorobenzyl)-4-dimetylaminopyridinium]-bis(maleonitriledithiolato)nickel(III), (BrFBzPyN(CH3)2(Ni(mnt)2)(1), has been prepared and characterized by elemental analyses, IR, ESI-MS spectra, single crystal X-ray diffraction and magnetic measurements. Compound 1 crystallizes in the orthorhombic space group Pnma, a=20.579(4) Å, b=7.078(1) Å, c=17.942(4) Å, α=β=γ=90°, V=2613.3(9) Å3, Z=4. The Ni(III) ions of 1 form a quasi-one-dimensional Zigzag magnetic chain within a Ni(mnt)2 column through Ni?S, S?S, Ni?Ni, or π?π interactions with an Ni?Ni distance of 4.227 Å. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 exhibits a spin-gap transition around 200 K, and antiferromagnetic interaction in the high-temperature phase (HT) and spin gap in the low-temperature phase (LT). The transition for 1 is second-order phase transition as determined by DSC analyses.  相似文献   

9.
Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity uμuμ + c2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton’s principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton’s principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton’s principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton’s principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.  相似文献   

10.
Structural and thermal properties of the two isostructural lanthanide metal-organic frameworks: [Er2(pdc)3(dmf)2]·dmf (1) and [Tm2(pdc)3(dmf)2]·dmf (2) where pdc = C5H3N(COO)22− and dmf = N,N′-dimethylformamide, have been investigated. They are characterized by the BET surface area of 302 and 101 m2/g for 1 and 2, respectively. This paper deals with the influence of activation conditions on sorption properties of the investigated complexes. Thermal investigations of as-made and activated complexes point to their entirely different thermal decompositions.  相似文献   

11.
By varying the Pd thickness (tPd) from 0 to 8 nm in [Co/Pd]4/Co/Pd(tPd)/NiFe exchange springs, we demonstrate (i) continuous tailoring of the exchange coupling between a [Co/Pd]4/Co layer with perpendicular anisotropy, and a NiFe layer with an in-plane easy axis, (ii) tuning of the NiFe out-of-plane magnetization angle from 20 to 80, and (iii) an up to two-fold increase in the NiFe damping. The partial decoupling also results in a highly uniform NiFe magnetization. These properties make [Co/Pd]4/Co/Pd(tPd)/NiFe spring magnets ideal candidates for use as tilted polarizers, by combining stable and well-defined spin directions of its carriers with a high degree of angular freedom.  相似文献   

12.
Thin organic films were deposited on silicon oxide surfaces with golden interdigitated electrodes (interelectrode gap was 2 μm), and the film resistivities were measured in dark and under white light illumination. The compounds selected for the measurements include molecules widely used in solar cell applications, such as polythiophene (PHT), fullerene (C60), pyrelene tetracarboxylic diimide (PTCDI) and copper phthalocyanine (CuPc), as well as molecules potentially interesting for photovoltaic applications, e.g. porphyrin-fullerene dyads. The films were deposited using thermal evaporation (e.g. for C60 and CuPc films), spin coating for PHT, and Langmuir-Schaeffer for the layer-by-layer deposition of porphyrin-fullerene dyads. The most conducting materials in the series are films of PHT and CuPc with resistivities 1.2 × 103 Ω m and 3 × 104 Ω m, respectively. Under light illumination resistivity of all films decreases, with the strongest light effect observed for PTCDI, for which resistivity decreases by 100 times, from 3.2 × 108 Ω m in dark to 3.1 × 106 Ω m under the light.  相似文献   

13.
The nonlinear optical absorptions of two 5,5′-bis(diphenylphosphino)-2,2′-bithiophene derivatives, Ph2(X)P(C4H2S)2P(X)Ph2 (X = O, 1; S, 2), have been investigated by direct transmission measurement with both picosecond and nanosecond laser pulses from 420 nm to 480 nm. Saturated dichloromethane solutions of 1 and 2 exhibit strong nonlinear optical absorptions in this violet-blue spectral region with that of 2 being stronger at all wavelengths. In the picosecond regime, at 420 nm, the transmittance rapidly falls to 50% when the incident fluence is 0.22 J/cm2 for 1 and 0.11 J/cm2 for 2. Two-photon absorption appears to be the primary mechanism for this nonlinear absorption. The two-photon absorption coefficients β for 1 (2.1 cm/GW) and 2 (4.4 cm/GM) were obtained by fitting the measurement of transmittance as the function of incident beam intensity at 420 nm. These β values are comparable with some of the best results obtained for organic materials in the green, red and infrared spectral region. Both compounds also show fluorescence with an emission peak at 390 nm for 1 and 400 nm for 2. The fluorescence of 1 is considerably stronger than is that of 2. The combination of the wide band gap and strong fluorescence emission of 1 makes it a promising candidate as a host material for blue organic light emitting diodes.  相似文献   

14.
Starting with the most general form of Maxwell's macroscopic equations in which the free charge and free current densities, ρfree and Jfree, as well as the densities of polarization and magnetization, P and M, are arbitrary functions of space and time, we compare and contrast two versions of the Poynting vector, namely, S = μo− 1E × B and S = E × H. Here E is the electric field, H is the magnetic field, B is the magnetic induction, and μo is the permeability of free space. We argue that the identification of one or the other of these Poynting vectors with the rate of flow of electromagnetic energy is intimately tied to the nature of magnetic dipoles and the way in which these dipoles exchange energy with the electromagnetic field. In addition, the manifest nature of both electric and magnetic dipoles in their interactions with the electromagnetic field has consequences for the Lorentz law of force. If the conventional identification of magnetic dipoles with Amperian current loops is extended beyond Maxwell's macroscopic equations to the domain where energy, force, torque, momentum, and angular momentum are active participants, it will be shown that “hidden energy” and “hidden momentum” become inescapable consequences of such identification with Amperian current loops. Hidden energy and hidden momentum can be avoided, however, if we adopt S = E × H as the true Poynting vector, and also accept a generalized version of the Lorentz force law. We conclude that the identification of magnetic dipoles with Amperian current loops, while certainly acceptable within the confines of Maxwell's macroscopic equations, is inadequate and leads to complications when considering energy, force, torque, momentum, and angular momentum in electromagnetic systems that involve the interaction of fields and matter.  相似文献   

15.
The reaction of metal ions, flexible aliphatic dicarboxylates and pyrazine in aqueous solution afford two new metal-organic coordination polymers, {[Cu2(μ2-η2-O2C(CH2)2CO2-η2-μ2)2(H2O)2]·2H2O}n (1) and [Eu2(μ2-η2-O2CCH2CO2-η1-μ1)2(μ2-η2-O2CCH2CO2-η2-μ2)(H2O)6]n (2). Polymer 1 contains the paddle-wheel cage dicopper(II) units, forming a one-dimensional (1D) double-stranded chain structure along the a-axis, in which the copper(II) atoms are bridged by the carboxylate groups of four succinates. The intradimer Cu-Cu distance is 2.613(2) Å; the interdimer Cu?Cu distance is 6.473 Å. To our knowledge, compound 1 represents the first example of a double-stranded chain structure containing dinuclear paddle-wheel type cage. In the three-dimensional (3D) compound 2, each central Eu(III) ion have a distorted monocapped square antiprism coordination geometry. The structure is built up from two types of polymeric chains with [EuO6(H2O)3]n units as tethers, resulting in microporous framework. The magnetic behavior of 1 shows that the occurrence of a strong antiferromagnetic coupling between the copper(II) ions through the short bridges via the carboxyl groups can be obtained; the best fittings to the experimental magnetic susceptibilities gave −2J=314 cm−1.  相似文献   

16.
We previously derived a simple equation for solving time-dependent Bloch equations by a matrix operation. The purpose of this study was to present a theoretical and numerical consideration of the longitudinal (R = 1/T) and transverse relaxation rates in the rotating frame (R = 1/T), based on this method. First, we derived an equation describing the time evolution of the magnetization vector (M(t)) by expanding the matrix exponential into the eigenvalues and the corresponding eigenvectors using diagonalization. Second, we obtained the longitudinal magnetization vector in the rotating frame (M(t)) by taking the inner product of M(t) and the eigenvector with the smallest eigenvalue in modulus, and then we obtained the transverse magnetization vector in the rotating frame (M(t)) by subtracting M(t) from M(t). For comparison, we also computed the spin-locked magnetization vector. We derived the exact solutions for R and R from the eigenvalues, and compared them with those obtained numerically from M(t) and M(t), respectively. There was excellent agreement between them. From the exact solutions for R and R, R was found to be given by R2ρ = (2R2 + R1)/2 − R1ρ/2, where R1 and R2 denote the conventional longitudinal and transverse relaxation rates, respectively. We also derived M(t) and M(t) for bulk water protons, in which the effect of chemical exchange was taken into account using a 2-pool chemical exchange model, and we compared the R and R values obtained from the eigenvalues and those obtained numerically from M(t) and M(t). There was also excellent agreement between them. In conclusion, this study will be useful for better understanding of the longitudinal and transverse relaxations in the rotating frame and for analyzing the contrast mechanisms in T- and T-weighted MRI.  相似文献   

17.
The paper presents the second-order optical nonlinearities from χ(2) gratings induced by holographic all-optical poling for azobenzene polymer. Second harmonic (SH) signal along the directions with two different vectors was measured. One is strong SH signal diffracted in the same direction as 2ω writing beam with wave vector k and the other is weak SH signal diffracted in the direction of wave vector of 4kω - k + Δk where kω is wave vector of ω beam and Δk is the wave vector mismatch whose vector is parallel to kω. The latter signal was used as a tool to monitor the formation of holographic χ(2) gratings in real-time because it has off-axis wave vector different from both kω and k. The increase of 2ω intensity on poling process led to the large increase of second-order optical nonlinearity. The real-time monitoring showed that it also gave the large relaxation of second-order optical nonlinearity on poling process. The increase of 2ω (532 nm) energy enhanced the increase of local heating, which led to easier alignment of azobenzene chromophore and also larger relaxation of aligned chromophore.  相似文献   

18.
Using 31P solid-state NMR spectroscopy, anisotropy in the indirect 199Hg-31P spin–spin coupling tensor (ΔJ) for powdered [HgPCy3(OAc)2]2 (1) has been measured as 4700±300 Hz. Zeroth-order regular approximation (ZORA) density functional theory (DFT) calculations, including scalar and spin-orbit relativistic effects, performed on 1 and a series of other related compounds show that ΔJ(199Hg, 31P) arises entirely from the ZORA Fermi-contact–spin-dipolar cross term. The calculations validate assumptions made in the spectral analysis of 1 and in previous determinations of ΔJ in powder samples, namely that J is axially symmetric and shares its principal axis system with the direct dipolar coupling tensor (D). Agreement between experiment and theory for various 199Hg, 31P spin–spin coupling anisotropies is reasonable; however, experimental values of 1J(199Hg, 31P)iso are significantly underestimated by the calculations. The most important improvements in the agreement were obtained as a result of including more of the crystal lattice in the model used for the calculations, e.g., a change of 43% was noted for 1J(199Hg, 31P)iso in [HgPPh3(NO3)2]2 depending on whether the two or three nearest nitrate ions are included in the model. Finally, we have written a computer program to simulate the effects of non-axial symmetry in J and of non-coincidence of the J and D on powder NMR spectra. Simulations clearly show that both of these effects have a pronounced impact on the 31P NMR spectrum of 199Hg–31P spin pairs, suggesting that the effects should be observable experimentally if a suitable compound can be identified.  相似文献   

19.
A previous study of the energy-momentum tensor in ?4 theory and spontaneously broken non-Abelian gauge field theories is extended here to show finiteness to all orders in perturbation theory. Divergences of Green's functions Γμν(j) (q; p1, …, pj) involving the energy-momentum tensor θμν and j particle fields are removed by counterterms of the ordinary Lagrangian plus a renormalization of the coefficient of the Callan-Coleman-Jackiw improvement term in θμν. Physically the extra renormalization means that the mean square “mass radius” of elementary spin zero particles must be specified from experiment.  相似文献   

20.
A new molecular complex of C60 with tetrabenzo(1,2-bis[4H-thiopyran-4-ylidene]ethene), Bz4BTPE C60 (1) has been obtained. The complex has a layered structure in which closely packed hexagonal layers of C60 alternate with the layers composed of Bz4BTPE molecules. The complex has a neutral ground state according to UV-vis-NIR spectrum. It has been found that single crystals of 1 show low ‘dark’ conductivity of σ∼10−10 (Ω cm)−1. A 102 increase in photocurrent has been observed upon illuminating the crystal with white light. Photoconductivity of 1 is sensitive to magnetic field with B0<1 T and increases up to 5% in magnetic field. The photoconductivity spectra of the complex indicate that free charge carriers are generated in the UV-visible range mainly by the Bz4BTPE excitation (the peaks at 622, 562, 472 and 348 nm) with a possible contribution of charge transfer excitations between neighboring C60 molecules (the peak at 472 nm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号