首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recent theoretical and numerical developments show analogies between quantum chromodynamics (QCD) and disordered systems in condensed matter physics. We study the spectral fluctuations of a Dirac particle propagating in a finite four-dimensional box in the presence of gauge fields. We construct a model which combines Efetov's approach to disordered systems with the principles of chiral symmetry and QCD. To this end, the gauge fields are replaced with a stochastic white-noise potential, the gauge field disorder. Effective supersymmetric nonlinear sigma models are obtained. Spontaneous breaking of supersymmetry is found. We rigorously derive the equivalent of the Thouless energy within our generic model implying the universality of this scale in QCD. Connections to other low energy effective theories, in particular, the Nambu-Jona-Lasinio model and chiral perturbation theory, are found.  相似文献   

3.
We review the non-anticommutative Q-deformations of = (1, 1) supersymmetric theories in four-dimensional Euclidean harmonic superspace. These deformations preserve chirality and harmonic Grassmann analyticity. The associated field theories arise as a low-energy limit of string theory in specific backgrounds and generalize the Moyal-deformed supersymmetric field theories. A characteristic feature of the Q-deformed theories is the half-breaking of supersymmetry in the chiral sector of the Euclidean superspace. Our main focus is on the chiral singlet Q-deformation, which is distinguished by preserving the SO(4) ∼ Spin(4) “Lorentz” symmetry and the SU(2) R-symmetry. We present the superfield and component structures of the deformed = (1, 0) supersymmetric gauge theory as well as of hypermultiplets coupled to a gauge superfield: invariant actions, deformed transformation rules, and so on. We discuss quantum aspects of these models and prove their renormalizability in the Abelian case. For the charged hypermultiplet in an Abelian gauge superfield background we construct the deformed holomorphic effective action. The text was submitted by the authors in English.  相似文献   

4.
《Nuclear Physics B》1986,263(1):173-186
We examine the supersymmetry Ward identity for supersymmetric Yang-Mills theories in the axial gauge. In the pure N = 1 (no matter) case the Ward identity leads to supersymmetric counterterms to all orders. This result does not survive the introduction of matter fields, however, and we therefore conclude that the gauge is not useful in the context of supersymmetry.  相似文献   

5.
6.
We continue the study of the supersymmetric vector multiplet in a purely quantum framework. We obtain some new results which make the connection with the standard literature. First we construct the one‐particle physical Hilbert space taking into account the (quantum) gauge structure of the model. Then we impose the condition of positivity for the scalar product only on the physical Hilbert space. Finally we obtain a full supersymmetric coupling which is gauge invariant in the supersymmetric sense in the first order of perturbation theory. By integrating out the Grassmann variables we get an interacting Lagrangian for a massive Yang‐Mills theory related to ordinary gauge theory; however the number of ghost fields is doubled so we do not obtain the same ghost couplings as in the standard model Lagrangian.  相似文献   

7.
We aim to give a pedagogical introduction to those elementary aspects of superconductivity which are not treated in the classic textbooks. In particular, we emphasize that global U (1) phase rotation symmetry, and not gauge symmetry, is spontaneously violated, and show that the BCS wave function is, contrary to claims in the literature, fully gauge invariant. We discuss the nature of the order parameter, the physical origin of the many degenerate states, and the relation between formulations of superconductivity with fixed particle numbers vs. well-defined phases. We motivate and to some extend derive the effective field theory at low temperatures, explore symmetries and conservation laws, and justify the classical nature of the theory. Most importantly, we show that the entire phenomenology of superconductivity essentially follows from the single assumption of a charged order parameter field. This phenomenology includes Anderson’s characteristic equations of superfluidity, electric and magnetic screening, the Bernoulli Hall effect, the balance of the Lorentz force, as well as the quantum effects, in which Planck’s constant manifests itself through the compactness of the U (1) phase field. The latter effects include flux quantization, phase slippage, and the Josephson effect.  相似文献   

8.
《Annals of Physics》1985,164(1):189-220
We analyze a weakly restricted general class of quantum mechanical models with at least four real supercharges and nonabelian gauge constraints. The innocent-looking restrictions lead automatically and exclusively to the quantum mechanics which are the dimensionally reduced counterparts of supersymmetric Yang-Mills field theories. This result provides in turn an independent proof that N = 1, N = 2 and N = 4 Yang-Mills fields are the only possible supersymmetric gauge field theories (without central charges) in four dimensions.  相似文献   

9.
In the present paper we shall study (2+1)-dimensional ZN gauge theories on a lattice. It is shown that the gauge theories have two phases, one is a Higgs phase and the other is a confinement phase. We investigate low-energy excitation modes in the Higgs phase and clarify relationship between the ZN gauge theories and Kitaev’s model for quantum memory and quantum computations. Then we study effects of random gauge couplings (RGC) which are identified with noise and errors in quantum computations by Kitaev’s model. By using a duality transformation, it is shown that time-independent RGC give no significant effects on the phase structure and the stability of quantum memory and computations. Then by using the replica methods, we study ZN gauge theories with time-dependent RGC and show that nontrivial phase transitions occur by the RGC.  相似文献   

10.
《Physics Reports》1986,132(1):1-53
Analytical and numerical work on confinement phase transitions in finite-temperature Abelian and non-Abelian gauge theories is reviewed. These transitions are order-disorder transitions and their critical properties (if any) can be understood from the standard theory of critical phenomena. Strong coupling, large-N, and non-perturbative lattice methods are discussed. The role of matter fields as symmetry-breaking perturbations is noted as important to the eventual unraveling of the phase structure of quantum chromodynamics.  相似文献   

11.
12.
We study the three-dimensional (3D) compact U(1) lattice gauge theory coupled with N-flavor Higgs fields by means of the Monte Carlo simulations. This model is relevant to multi-component superconductors, antiferromagnetic spin systems in easy plane, inflational cosmology, etc. It is known that there is no phase transition in the N = 1 model. For N = 2, we found that the system has a second-order phase transition line in the c2 (gauge coupling)-c1 (Higgs coupling) plane, which separates the confinement phase and the Higgs phase. Numerical results suggest that the phase transition belongs to the universality class of the 3D XY model as the previous works by Babaev et al. and Smiseth et al. suggested. For N = 3, we found that there exists a critical line similar to that in the N = 2 model, but the critical line is separated into two parts; one for c2<c2tc=2.4±0.1 with first-order transitions, and the other for c2tc<c2 with second-order transitions, indicating the existence of a tricritical point. We verified that similar phase diagram appears for the N = 4 and N = 5 systems. We also studied the case of anistropic Higgs coupling in the N = 3 model and found that there appear two second-order phase transitions or a single second-order transition and a crossover depending on the values of the anisotropic Higgs couplings. This result indicates that an “enhancement” of phase transition occurs when multiple phase transitions coincide at a certain point in the parameter space.  相似文献   

13.
Some aspects of supersymmetric gauge theories and discussed. It is shown that dynamical supersymmetry breaking does not occur in supersymmetric QED in higher dimensions. The cancellation of both local (perturbative) and global (non-perturbative) gauge anomalies are also discussed in supersymmetric gauge theories. We argue that there is no dynamical supersymmetry breaking in higher dimensions in any supersymmetric gauge theories free of gauge anomalies. It is also shown that for supersymmetric gauge theories in higher dimensions with a compact connected simple gauge group, when the local anomaly-free condition is satisfied, there can be at most a possibleZ 2 global gauge anomaly in extended supersymmetricSO(10) (or spin (10)) gauge theories inD=10 dimensions containing additional Weyl fermions in a spinor representation ofSO(10) (or spin (10)). In four dimensions with local anomaly-free condition satisfied, the only possible global gauge anomalies in supersymmetric gauge theories areZ 2 global gauge anomalies for extended supersymmetricSP(2N) (N=rank) gauge theories containing additional Weyl fermions in a representation ofSP(2N) with an odd 2nd-order Dynkin index.  相似文献   

14.
《Physics Reports》2004,392(3):121-189
M theory compactifications on G2 holonomy manifolds, whilst supersymmetric, require singularities in order to obtain non-Abelian gauge groups, chiral fermions and other properties necessary for a realistic model of particle physics. We review recent progress in understanding the physics of such singularities. Our main aim is to describe the techniques which have been used to develop our understanding of M theory physics near these singularities. In parallel, we also describe similar sorts of singularities in Spin(7) holonomy manifolds which correspond to the properties of three dimensional field theories. As an application, we review how various aspects of strongly coupled gauge theories, such as confinement, mass gap and non-perturbative phase transitions may be given a simple explanation in M theory.  相似文献   

15.
《Nuclear Physics B》1997,492(3):647-681
A new method to obtain the Picard-Fuchs equations of effective, N = 2 supersymmetric gauge theories in 4 dimensions is developed. It includes both pure super Yang-Mills and supersymmetric gauge theories with massless matter hypermultiplets. It applies to all classical gauge groups, and directly produces a decoupled set of second-order, partial differential equations satisfied by the period integrals of the Seiberg-Witten differential along the 1-cycles of the algebraic curves describing the vacuum structure of the corresponding N = 2 theory.  相似文献   

16.
朱诗亮 《物理》2006,35(11):919-923
量子相变是凝聚态物理中的重要研究课题,而几何相位的发现是近几十年来量子力学中的重要进展,它们毫无关联地各自发展。但最近的研究表明,它们之间有密切联系:多体体系基态的几何相位在量子相变点附近具有标度性;不可收缩的几何相位可用来作为量子相变的标志等,文章将介绍最近在量子相变和几何相位的关系方面的研究进展,并用XY自旋链模型来详细说明.这些结果应会吸引凝聚态和几何相位领域工作的研究人员的关注和兴趣。  相似文献   

17.
We analyze the finite temperature behavior of the Sakai-Sugimoto model, which is a holographic dual of a theory which spontaneously breaks a U(Nf)L × U(Nf)R chiral flavor symmetry at zero temperature. The theory involved is a 4 + 1 dimensional supersymmetric SU(Nc) gauge theory compactified on a circle of radius R with anti-periodic boundary conditions for fermions, coupled to Nf left-handed quarks and Nf right-handed quarks which are localized at different points on the compact circle (separated by a distance L). In the supergravity limit which we analyze (corresponding in particular to the large Nc limit of the gauge theory), the theory undergoes a deconfinement phase transition at a temperature Td = 1/2πR. For quark separations obeying L > Lc ? 0.97 ∗ R the chiral symmetry is restored at this temperature, but for L < Lc ? 0.97 ∗ R there is an intermediate phase which is deconfined with broken chiral symmetry, and the chiral symmetry is restored at TχSB ? 0.154/L. All of these phase transitions are of first order.  相似文献   

18.
In supersymmetric models whose gauge group includes an additional U(1) factor at the TeV scale, broken by the VEV of an standard model singlet S, the parameter space can accommodate a very light neutralino not ruled out experimentally. This higgsino-like fermion, stable if R-parity is conserved, can make a good cold dark matter candidate. We examine the thermal relic density of this particle and discuss the prospects for its direct detection if it forms part of our galactic halo.  相似文献   

19.
Two topics of lattice gauge theory are reviewed. They include string tension and β-function calculations by strong coupling Hamiltonian methods for SU(3) gauge fields in 3 + 1 dimensions, and a 1/N-expansion for discrete gauge and spin systems in all dimensions. The SU(3) calculations give solid evidence for the coexistence of quark confinement and asymptotic freedom in the renormalized continuum limit of the lattice theory. The crossover between weak and strong coupling behavior in the theory is seen to be a weak coupling but non-perturbative effect. Quantitative relationships between perturbative and non-perturbative renormalization schemes are obtained for the O(N) nonlinear sigma models in 1 + 1 dimensions as well as the range theory in 3 + 1 dimensions. Analysis of the strong coupling expansion of the β-function for gauge fields suggests that it has cuts in the complex 1/g2-plane. A toy model of such a cut structure which naturally explains the abruptness of the theory's crossover from weak to strong coupling is presented. The relation of these cuts to other approaches to gauge field dynamics is discussed briefly.The dynamics underlying first order phase transitions in a wide class of lattice gauge theories is exposed by considering a class of models-P(N) gauge theories - which are soluble in the N → ∞ limit and have non-trivial phase diagrams. The first order character of the phase transitions in Potts spin systems for N #62; 4 in 1 + 1 dimensions is explained in simple terms which generalizes to P(N) gauge systems in higher dimensions. The phase diagram of Ising lattice gauge theory coupled to matter fields is obtained in a 1N expansion. A one-plaquette model (1 time-0 space dimensions) with a first-order phase transitions in the N → ∞ limit is discussed.  相似文献   

20.
Recently the revised phase diagram of the (large N) Gross-Neveu model in 1 + 1 dimensions with discrete chiral symmetry has been determined numerically. It features three phases, a massless and a massive Fermi gas and a kink-antikink crystal. Here we investigate the phase diagram by analytical means, mapping the Dirac-Hartree-Fock equation onto the non-relativistic Schrödinger equation with the (single gap) Lamé potential. It is pointed out that mathematically identical phase diagrams appeared in the condensed matter literature some time ago in the context of the Peierls-Fröhlich model and ferromagnetic superconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号