首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
量子相变     
蔡玉平  宁如云  韩代朝 《低温与超导》2006,34(2):123-125,148
量子相变是一种发生在绝对零度,由量子涨落而非热涨落导致的相变现象,满足著名的海森堡不确定关系。通过零温量子临界点的研究,可获知物质系统更广泛范围的行为,包括稀土磁性绝缘体,高温超导体和二维电子气体等。  相似文献   

2.
M.K.G. Kruse  A. Plastino 《Physica A》2010,389(13):2533-2540
We report on the fact that microscopically enforcing fulfillment of thermodynamics’ third law on a system of fermions automatically yields the values of the external parameter (here coupling strengths in the pertinent Hamiltonian) at which quantum phase transitions take place. Our considerations are illustrated via an exactly solvable model of Plastino and Moszkowski [Il Nuovo Cimento 47, 470 (1978)].  相似文献   

3.
Leon Balents 《Annals of Physics》2007,322(11):2635-2664
We present a general framework for describing the quantum phases obtained by doping paramagnetic Mott insulators on the square lattice. The undoped insulators are efficiently characterized by the projective transformations of various fields under the square lattice space group (the PSG). We show that the PSG also imposes powerful constraints on the doped system, and on the effective action for the vortex and Bogoliubov quasiparticle excitations of superconducting states. This action can also be extended across transitions to supersolid or insulating states at non-zero doping. For the case of a valence bond solid (VBS) insulator, we show that the doped system has the same PSG as that of elementary bosons with density equal to the density of electron Cooper pairs. We also discuss aspects of the action for a d-wave superconductor obtained by doping a “staggered-flux” spin liquid state.  相似文献   

4.
An overview is presented of the phase changes as well as certain relaxation characteristics of model quantum magnets, magnetic glasses and proton glasses. Although the systems considered are quite varied, they are connected by the common themes of tunneling, transverse Ising model, long-ranged interactions and above all, the occurrence of quantum phase transitions. Because the interactions are long-ranged, mean-field theory is eminently suitable for analyzing both the equilibrium and nonequilibrium properties. Wherever pertinent, detailed comparisons with experimental data have been presented.  相似文献   

5.
6.
We present a general introduction to the non-zero temperature dynamic and transport properties of low-dimensional systems near a quantum phase transition. Basic results are reviewed in the context of experiments on the spin-ladder compounds, insulating two-dimensional antiferromagnets, and double-layer quantum Hall systems. Recent large N computations on an extended tJ model (Phys. Rev. Lett. 83 (1999) 3916) motivate a global scenario of the quantum phases and transitions in the high-temperature superconductors, and connections are made to numerous experiments.  相似文献   

7.
We discuss the quantum phase transitions (QPT) in N-spin chains from the point of view of collective observables. We show that the measurement space representation is a convenient tool for the analysis of phase transitions, allowing the determination of an appropriate set of macroscopic order parameters (for a given Hamiltonian). Quantum correlations in the vicinity of the critical points are analyzed both in the ground states and low temperature thermal states.  相似文献   

8.
Novel quantum phases are found in the ground state of Rashba ring: the orbital magnetic phase (OMP), non-OMP, pseudo-OMP and quasi-OMP, which depend on the spin-orbit interaction (SOI) strength, electron number and ring size. We give the phase diagram and their quantum-phase-transition conditions.  相似文献   

9.
《Physics letters. A》2020,384(16):126333
We investigate the diagonal entropy(DE) of the ground state for quantum many-body systems, including the XY model and the Ising model with next nearest neighbor interactions. We focus on the DE of a subsystem of L continuous spins. We show that the DE in many-body systems, regardless of integrability, can be represented as a volume term plus a logarithmic correction and a constant offset. Quantum phase transition points can be explicitly identified by the three coefficients thereof. Besides, by combining entanglement entropy and the relative entropy of quantum coherence, as two celebrated representatives of quantumness, we simply obtain the DE, which naturally has the potential to reveal the information of quantumness. More importantly, the DE is concerning only the diagonal form of the ground state reduced density matrix, making it feasible to measure in real experiments, and therefore it has immediate applications in demonstrating quantum supremacy on state-of-the-art quantum simulators.  相似文献   

10.
Quantum phase transitions occur at zero temperature when some non‐thermal control‐parameter like pressure or chemical composition is changed. They are driven by quantum rather than thermal fluctuations. In this review we first give a pedagogical introduction to quantum phase transitions and quantum critical behavior emphasizing similarities with and differences to classical thermal phase transitions. We then illustrate the general concepts by discussing a few examples of quantum phase transitions occurring in electronic systems. The ferromagnetic transition of itinerant electrons shows a very rich behavior since the magnetization couples to additional electronic soft modes which generates an effective long‐range interaction between the spin fluctuations. We then consider the influence of rare regions on quantum phase transitions in systems with quenched disorder, taking the antiferromagnetic transitions of itinerant electrons as a primary example. Finally we discuss some aspects of the metal‐insulator transition in the presence of quenched disorder and interactions.  相似文献   

11.
12.
孙培杰  赵恒灿 《物理》2020,49(9):579-585
近藤效应和RKKY交换相互作用的竞争决定了多数重费米子化合物的基态性质。通过压力、磁场等非热力学参量调控,该类材料能够在绝对零温附近实现费米液体和磁有序相之间的连续转变,提供了研究量子相变的理想平台。另一方面,在绝缘的量子磁体中,自旋阻挫引起的量子涨落抑制低温下长程磁有序的发生,导致自旋液体相等新奇物态的产生。在近藤晶格中引入自旋阻挫将给重费米子材料提供一个新的调控维度,深刻改变该类材料的量子临界相图,是重费米子材料领域的一个新颖研究方向。文章首先介绍阻挫重费米子体系的研究背景,然后针对CePdAl的物性展开讨论,探讨阻挫对重费米子材料量子临界物性的影响以及量子临界相的普适性。  相似文献   

13.
We discuss three different scenarios recently proposed to account for the non-Fermi liquid behavior near antiferromagnetic (AFM) quantum critical points in heavy-Fermion systems: (i) scattering of Fermi liquid quasiparticles by strong spin fluctuations near the spin-density-wave instability, (ii) the breakdown of the Kondo effect due to the competition with the RKKY interaction, and (iii) the formation of magnetic regions due to rare configurations of the disorder. Here we focus on the first scenario and show that it explains in some detail the anomalous temperature dependence of the resistivity observed, e.g. in CePd2Si2, CeNi2Ge2 or CeIn3. The interplay of strongly anisotropic scattering due to critical spin-fluctuations and weak isotropic impurity scattering leads to a regime with a resistivity for sufficiently large T and small ρ0.  相似文献   

14.
In metals with strong electronic correlations such as heavy-fermion systems or itinerant-electron magnets it is possible to change from a magnetically ordered to a nonmagnetic groundstate by variation of an external parameter such as composition or pressure. In principle a transition between these groundstates can occur at zero temperature. In case of a continuous transition quantum fluctuations take the role of thermal fluctuations in finite-temperature transitions. The abundance of low-lying magnetic excitations leads in the vicinity of the quantum critical point to unusual behavior of thermodynamic and transport properties at low temperatures T not envisioned by the classical Fermi-liquid behavior that is observed even in strongly correlated electron systems away from the quantum phase transition. We discuss in detail a few examples of this ‘non-Fermi-liquid behavior', viz., CeCu6−xAux, Ce1−xLaxRu2Si2, Ce7Ni3, CeCu2Si2 and CeCu2Ge2, CePd2Si2, and UCu1−xPdx. In CeCu6−xAux the very unusual low-T behavior of the linear specific-heat coefficient C/T−ln(T/T0) and of the resistivity ΔρT can be attributed to quasi-two-dimensional fluctuations as determined from inelastic neutron scattering. The systems CeCu2Ge2 and CePd2Si2 are particuarly interesting since here the magnetic order which is suppressed under hydrostatic pressure gives way to superconductivity, suggesting that spin fluctuations mediate the formation of Cooper pairs at least in the latter system.  相似文献   

15.
In this paper we study the one-dimensional XY model with single ion anisotropy and long-range interaction that decay as a power law. The model has a quantum phase transition, at zero temperature, at a critical value Dc of the anisotropy parameter D. For values of D below Dc we use a self-consistent harmonic approximation. We have found that the critical temperature increases with D for small values of this parameter. For values of D above Dc we use the bond operator technique and calculate the gap as a function of D, at zero temperature.  相似文献   

16.
We investigate two solvable models for Bose-Einstein condensates and extract physical information by studying the structure of the solutions of their Bethe ansatz equations. A careful observation of these solutions for the ground state of both models, as we vary some parameters of the Hamiltonian, suggests a connection between the behavior of the roots of the Bethe ansatz equations and the physical behavior of the models. Then, by the use of standard techniques for approaching quantum phase transition - gap, entanglement and fidelity - we find that the change in the scenery in the roots of the Bethe ansatz equations is directly related to a quantum phase transition, thus providing an alternative method for its detection.  相似文献   

17.
The quantum anisotropic antiferromagnetic Heisenberg model with single ion anisotropy, spin S=1 and up to the next-next-nearest neighbor coupling (the J1J2J3 model) on a square lattice, is studied using the bond-operator formalism in a mean field approximation. The quantum phase transitions at zero temperature are obtained. The model features a complex T=0 phase diagram, whose ordering vector is subject to quantum corrections with respect to the classical limit. The phase diagram shows a quantum paramagnetic phase situated among Neél, spiral and collinear states.  相似文献   

18.
Hengcan Zhao 《中国物理 B》2022,31(11):117103-117103
CePdAl has been recently recognized as a frustrated antiferromagnetic heavy-fermion compound with a pressure- or field-tuned, extended quantum critical phase at zero temperature. Identifying characteristic signatures of the emerging quantum critical phase, which are expected to be distinct from those near a quantum critical point, remains challenging. In this work, by performing ultrasonic and thermoelectric measurements down to very low temperatures in a 3He-4He dilution refrigerator in the presence of magnetic field, we are able to obtain some crucial thermodynamic and thermal transport features of the quantum critical phase, including a frustration-related elastic softening detected by ultrasound and a Fermi-surface change probed by thermoelectric effect.  相似文献   

19.
Some recent theoretical developments of the QCD phase diagram are summarized. Chiral symmetry restoration and the confinement/deconfinement transition at nonzero temperature and quark densities are analyzed in the framework of an effective linear sigma model with three light quark flavors. The sensitivity of the chiral transition as well as the existence of a critical end point in the phase diagram on the value of the sigma mass is explored. The influence of the axial anomaly on the chiral critical surface is addressed. Finally, the modifications by the inclusion of the Polyakov loop on the phase structure are investigated.  相似文献   

20.
朱诗亮 《物理》2006,35(11):919-923
量子相变是凝聚态物理中的重要研究课题,而几何相位的发现是近几十年来量子力学中的重要进展,它们毫无关联地各自发展.但最近的研究表明,它们之间有密切联系:多体体系基态的几何相位在量子相变点附近具有标度性;不可收缩的几何相位可用来作为量子相变的标志等.文章将介绍最近在量子相变和几何相位的关系方面的研究进展,并用XY自旋链模型来详细说明.这些结果应会吸引凝聚态和几何相位领域工作的研究人员的关注和兴趣.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号