首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum Hamiltonian systems corresponding to classical systems related by a general canonical transformation are considered. The differential equation to find the unitary operator, which corresponds to the canonical transformation and connects quantum states of the original and transformed systems, is obtained. The propagator associated with their wave functions is found by the unitary operator. Quantum systems related by a linear canonical point transformation are analyzed. The results are tested by finding the wave functions of the under-, critical-, and over-damped harmonic oscillator from the wave functions of the harmonic oscillator, free-particle system, and negative harmonic potential system, using the unitary operator to connect them, respectively.  相似文献   

2.
Wensen Liu 《Annals of Physics》2004,312(2):480-491
A time-dependent closed-form formulation of the linear unitary transformation for harmonic-oscillator annihilation and creation operators is presented in the Schrödinger picture using the Lie algebraic approach. The time evolution of the quantum mechanical system described by a general time-dependent quadratic Hamiltonian is investigated by combining this formulation with the time evolution equation of the system. The analytic expressions of the evolution operator and propagator are found. The motion of a charged particle with variable mass in the time-dependent electric field is considered as an illustrative example of the formalism. The exact time evolution wave function starting from a Gaussian wave packet and the operator expectation values with respect to the complicated evolution wave function are obtained readily.  相似文献   

3.
We study the dynamical invariant for dissipative three coupled oscillators mainly from the quantum mechanical point of view. It is known that there are many advantages of the invariant quantity in elucidating mechanical properties of the system. We use such a property of the invariant operator in quantizing the system in this work. To this end, we first transform the invariant operator to a simple one by using a unitary operator in order that we can easily manage it. The invariant operator is further simplified through its diagonalization via three-dimensional rotations parameterized by three Euler angles. The coupling terms in the quantum invariant are eventually eliminated thanks to such a diagonalization. As a consequence, transformed quantum invariant is represented in terms of three independent simple harmonic oscillators which have unit masses. Starting from the wave functions in the transformed system, we have derived the full wave functions in the original system with the help of the unitary operators.  相似文献   

4.
We study both classical and quantum relation between two Hamiltoniansystems which are mutually connected by time-dependent canonical transformation. One is ordinary conservative system and the other istime-dependent Hamiltonian system. The quantum unitary operatorrelevant to classical canonical transformation between the two systems are obtained through rigorous evaluation. With the aid of the unitary operator, we have derived quantum states of the time-dependent Hamiltonian system through transforming the quantum states of the conservative system. The invariant operators of the two systems are presented and the relation between them are addressed. We showed that there exist numerous Hamiltonians, which gives the same classical equation of motion. Though it is impossible to distinguish the systems described by these Hamiltonians within the realm of classical mechanics, they can be distinguishable quantum mechanically.  相似文献   

5.
A unitary transformation is derived which diagonalizes the Rabi Hamiltonian. While the solution of this diagonalization problem by standard methods has long been known, it is found that the unitary operator is of a form which has previously not been used in the connexion with spin-boson problems. The transformed Hamiltonian as well as some other characteristic transformed operators are calculated. A comparison is made between the exact unitary operator and a weak coupling transformation which is equivalent to second order perturbation theory.  相似文献   

6.
The Schrödinger equation of the mesoscopic capacitance coupled circuit with an arbitrary power source is solved by means of two step unitary transformation. The original Hamiltonian transformed to a very simple form by unitary operators so that it can be easily treated. We derived the exact full wave functions in Fock state. By making use of these wave functions and introducing the Lewis--Riesenfeld invariant operator, the thermal state have been constructed. The fluctuations of charges and currents are evaluated in thermal state. For T→ 0, the uncertainty products between charges and currents in thermal state recovers exactly to that of Fock state with n, m=0.  相似文献   

7.
We present a general, systematic, and efficient method for decomposing any given exponential operator of bosonic mode operators, describing an arbitrary multimode Hamiltonian evolution, into a set of universal unitary gates. Although our approach is mainly oriented towards continuous-variable quantum computation, it may be used more generally whenever quantum states are to be transformed deterministically, e.g., in quantum control, discrete-variable quantum computation, or Hamiltonian simulation. We illustrate our scheme by presenting decompositions for various nonlinear Hamiltonians including quartic Kerr interactions. Finally, we conclude with two potential experiments utilizing offline-prepared optical cubic states and homodyne detections, in which quantum information is processed optically or in an atomic memory using quadratic light-atom interactions.  相似文献   

8.
We derived the WKB wave function for the general time-dependent quadratic Hamiltonian system using a unitary transformation method. We applied our research to sinusodially drived Caldirola–Kanai oscillator and confirmed that the time evolution of our approximated WKB wave function is similar to that of the exact one. This wave function can be used to analyze the interference between the probability amplitudes contributed by the area of overlap in phase space of quantum states.  相似文献   

9.
In the path integral representation, the Hamiltonian in a quantum system is associated with the Hamiltonian in a classical system through the Weyl transformation. From this, it is possible to describe the time evolution in a quantum system by the Hamiltonian in a classical system. In a Bose system, the Weyl transformation is defined by the eigenstates of the canonical operators, since the Hamiltonian is given by a function of the canonical operators. On the other hand, in a Fermi system, the Hamiltonian is usually described by a function of the creation and annihilation operators, and hence the Weyl transformation is defined by the coherent states which are the eigenstate of an annihilation operator. Here, we formulate the Weyl transformation in Fermi systems in terms of the eigenstates of the canonical operators so as to clarify the correspondence between both systems. Using this, we can derive the path integral representation in Fermi systems.  相似文献   

10.
在量子动力学计算中,有时候为了规避奇点问题或者节省计算量,我们经常需要对哈密顿量进行变换. 然而,在使用傅里叶基矢计算时,哈密顿量的变换形式容易导致哈密顿矩阵失去厄米性,进而有些情况下使数值计算变得不稳定. 本文主要讨论构建具有厄米性的哈密顿算符的方法. 以三原子分子为例,构建了键长—键角和Radau坐标下描述分子运动的各种形式的哈密顿量. 基于这些哈密顿量,采用含时波包方法计算了OClO分子的吸收光谱,讨论了非厄米性矩阵对计算结果的影响. 本文所得到的结论对基于基函数展开的量子动力学计算都是适用的.  相似文献   

11.
A novel unitary transformation of the Hamiltonian that allows one to partially separate the center-of-mass motion for charged electron-hole systems in a magnetic field is presented. The two-mode squeezed oscillator states that appear at the intermediate stage of the transformation are used for constructing a trial wave function of a two-dimensional charged magnetoexciton.  相似文献   

12.
Quantum characteristics of a charged particle subjected to a singular oscillator potential under an external magnetic field is investigated via SU(1,1) Lie algebraic approach together with the invariant operator and the unitary transformation methods. The system we managed is somewhat complicated since we considered not only the time-variation of the effective mass of the system but also the dependence of the external magnetic field on time in an arbitrary fashion. In this case, the system is a kind of time-dependent Hamiltonian systems which require more delicate treatment when we study it. The complete wave functions are obtained without relying on the methods of perturbation and/or approximation, and the global phases of the system are identified. To promote the understanding of our development, we applied it to a particular case, assuming that the effective mass slowly varies with time under a time-dependent magnetic field.  相似文献   

13.
By properly selecting the time-dependent unitary transformation for the linear combination of the number operators, we construct a time-dependent invariant and derive the corresponding auxiliary equations for the degenerate and non-degenerate coupled parametric down-conversion system with driving term. By means of this invariant and the Lewis-Riesenfeld quantum invariant theory, we obtain closed formulae of the quantum state and the evolution operator of the system. We show that the time evolution of the quantum system directly leads to production of various generalized one- and two-mode combination squeezed states, and the squeezed effect is independent of the driving term of the Hamiltonian. In somespecial cases, the current solution can reduce to the results of the previous works.  相似文献   

14.
Based on the opinion that the γ-matrices in Dirac equation have structure and are decomposable, we decompose the γ-matrices into the direct product of the operators in the spin space and the particle-antiparticle space. By using this method, we attain a complete set of commutative operators, a set of quantum numbers and the correspondingly eigen solutions of the Hamiltonian for a charged Dirac particle moving in a uniform constant magnetic field. In addition, the dynamic supersymmetry of the Hamiltonian is unveiled. Spin symmetry breaking and particle-antiparticle symmetry breaking are discussed, and the supersymmetric group operator of the degenerate spin subspace resulting from the spin residual supersymmetry is found.  相似文献   

15.
引进了幺正的双模积分型投影算符,利用有序算符内的积分(IWOP)技术分析了其变换特性;然后利用该积分型投影算符对角化了双模耦合量子谐振子体系的哈密顿量,从而求出了体系的本征能级与本征波函数;最后讨论了特例情形.  相似文献   

16.
We formulate the second quantization of a charged scalar field in homogeneous, time-dependent electromagnetic fields, in which the Hamiltonian is an infinite system of decoupled, time-dependent oscillators for electric fields, but it is another infinite system of coupled, time-dependent oscillators for magnetic fields. We then employ the quantum invariant method to find various quantum states for the charged field. For time-dependent electric fields, a pair of quantum invariant operators for each oscillator with the given momentum plays the role of the time-dependent annihilation and the creation operators, constructs the exact quantum states, and gives the vacuum persistence amplitude as well as the pair-production rate. We also find the quantum invariants for the coupled oscillators for the charged field in time-dependent magnetic fields and advance a perturbation method when the magnetic fields change adiabatically. Finally, the quantum state and the pair production are discussed when a time-dependent electric field is present in parallel to the magnetic field.  相似文献   

17.
The most general dynamical laws describing the evolution of isolated systems are discussed. These may be described by linear transformations which in classical physics apply to probability-distributions in quantum physics to density operators. Entropy does not decrease if and only if the equipartition is invariant under the dynamical transformation. This invariance follows in a natural way for isolated systems from the interpretation of entropy as lack of information. If entropy is conserved for quantum systems the dynamical transformation becomes a unitary transformation generated by a Hamiltonian whereas for classical systems a generalized form ofLiouville's equation may be derived.  相似文献   

18.
It is shown that the system of a three-level atom coupled with two modes of quantized cavity fields in the V-configuration with arbitrary detunings can be exactly reduced to a two-level system with a nonsingular effective coupling which depends nonlinearly on the intensity of the two cavity fields. By performing a unitary transformation, we obtain an exact transformed Hamiltonian in which one of the three levels is decoupled for all values of the detunings including the zero-detuning. We also present the analytical expressions of energy eigenvdues and eigenvectors, evolution operator, time-varying atomic inversion operator and photon number operators of the two modes for the effective two-level model.  相似文献   

19.
引进了幺正的双模坐标-动量积分型投影算符,利用有序算符内的积分(IWOP)技术分析了其变换特性,并导出了其正规乘积展开式.然后利用该积分型投影算符对角化了双模耦合量子谐振子体系的哈密顿量,从而求出了体系的本征能级与本征波函数.最后讨论了特例情形. 关键词: 积分型投影算符 有序算符内的积分技术 坐标-动量耦合  相似文献   

20.
《Physica A》1988,147(3):461-486
In a recent paper we have shown that continuous sets of resonances (as expressed by the nonvanishing of the kinetic collision operator) result in divergences in the traditional unitary transformation theory in addition to the usual ultraviolet divergences. Therefore, relaxation processes and lifetimes cannot be eliminated by unitary transformations diagonalizing the Hamiltonian. For this reason, we introduce a more general transformation theory based on nonfactorizable superoperators which “block diagonalize” the Hamiltonian superoperator and eliminate the divergence of the unitary transformation. This leads to a new concept of “observables” which are represented in general by operators which are both noncommuting and nondistributive. For example, to a single energy level we now associate a set of numbers corresponding to a probability distribution whose width is determined by the lifetime of the state. This new approach incorporates dissipation into the frame of quantum mechanics. It leads directly to a number of predictions such as the existence of a new anomalous Lamb shift dependent on lifetime as well as the appearance of a broken “time symmetry” in the structure of the energy spectrum. As this symmetry breaking depends on the arrow of time (thermodynamic equilibrium is approached in our future and not in our past) which is a property of our universe as a whole, we may call this new effect the “cosmological” Lamb shift. Of course subsequent experiments will have to explore the existence of this effect. Other consequences of this approach are briefly mentioned and will be developed in subsequent papers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号