首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of weakly ionized plasmas as spectroscopic sources for materials sampling and analysis is reviewed. Plasma sources currently used for this purpose include direct-current and alternating-current plasmas, inductively coupled plasmas, microwave-induced plasmas, surface-wave plasmas, capacitively coupled plasmas, capacitive microwave plasmas, glow discharges, flowing afterglows, theta pinch discharges, exploding films and wires, and laser-produced plasmas. The authors give a summary of relevant characteristics of some of the plasma sources. Included are the source, common method of application, approximate detection limit for that method, applicability for solid sampling, susceptibility to matrix effects, approximate cost, and the most common usage for the method  相似文献   

2.
In this study, the plasma density and electron temperature of Radio Frequency (RF) plasmas were determined by three types of Langmuir probes, namely a conventional double probe, a single probe with RF choke and a single probe with RF choke and compensating electrode. The same plasmas were characterized by the three probes, each performing three measurements per plasma condition, in order to determine the precision of the measurement results. After performing a comparative analysis, which looked at the precision and the accuracy of these results, the conclusion is that the double probe, which has already the advantage of the simplest construction, yields the most reliable results for both capacitively and inductively coupled RF plasmas. The single probe with RF choke and compensating electrode has a similar precision as the single probe without compensating electrode, but its accuracy is better.  相似文献   

3.
The source frequency has a strong influence on plasma characteristics in RF discharges. Multiple sources at widely different frequencies are often simultaneously used to separately optimize the magnitude and energy of ion fluxes to the substrate. In doing so, the sources are relatively independent of each other. These sources can, however, nonlinearly interact if the frequencies are sufficiently close. The resulting plasma and electrical characteristics can then be significantly different from those due to the sum of the individual sources. In this paper, a plasma equipment model is used to investigate the interaction of multiple frequency sources in capacitively and inductively coupled RF excited plasmas. In capacitively coupled systems, we confirmed that the plasma density increases with increasing frequency but also found that the magnitude of the DC bias and DC sheath voltage decreases. To produce a capacitively coupled discharge having a high plasma density with a large DC bias, we combined low and high frequency sources. The plasma density did increase using the dual frequency system as compared to the single low frequency source. The sources, however, nonlinearly interacted at the grounded wall sheath, thereby shifting both the plasma potential and DC bias. In inductively coupled plasmas (ICP), the frequency of the capacitive substrate bias does not have a significant effect on electron temperature and density. The DC bias and DC sheath voltage at the substrate were, however, found to strongly depend on source frequency. By using additional RF sources at alternate locations in ICP reactors, it was found that the DC bias at the substrate was varied without significantly changing other plasma parameters, such as the substrate sheath potential  相似文献   

4.
Yong-Xin Liu 《中国物理 B》2022,31(8):85202-085202
Two classic radio-frequency (RF) plasmas, i.e., the capacitively and the inductively coupled plasmas (CCP and ICP), are widely employed in material processing, e.g., etching and thin film deposition, etc. Since RF plasmas are usually operated in particular circumstances, e.g., low pressures (mTorr-Torr), high-frequency electric field (13.56 MHz-200 MHz), reactive feedstock gases, diverse reactor configurations, etc., a variety of physical phenomena, e.g., electron resonance heating, discharge mode transitions, striated structures, standing wave effects, etc., arise. These physical effects could significantly influence plasma-based material processing. Therefore, understanding the fundamental processes of RF plasma is not only of fundamental interest, but also of practical significance for the improvement of the performance of the plasma sources. In this article, we review the major progresses that have been achieved in the fundamental study on the RF plasmas, and the topics include 1) electron heating mechanism, 2) plasma operation mode, 3) pulse modulated plasma, and 4) electromagnetic effects. These topics cover the typical issues in RF plasma field, ranging from fundamental to application.  相似文献   

5.
A fluid model for simulating the capacitively coupled steady RF plasmas in a monosilane-hydrogen mixture under plasma-processing conditions is developed. This model includes Monte Carlo treatment for electron transport properties in the mixture. The Monte Carlo simulation shows that the electron transport phenomena in the nonuniform RF field of 10 MHz are not in equilibrium with the local electric field. The nonequilibrium transport properties are incorporated in the fluid model (hybrid model) by modifying the equilibrium values of the swarm parameters using data from the Monte Carlo simulation. Using this model, the spatiotemporal variations of the charged species and the electric field in the sheath region of the RF plasma are calculated. For obtaining the steady RF plasma structure, ion-induced slow processes such as recombination and diffusion of ions are calculated by combining the hybrid model with rate equations for ions. Using the calculated steady RF plasma structure, a preliminary calculation of the silyl (SiH 3) and hydrogen (H) radical distributions caused by the generation, diffusion, and reaction of the radicals are carried out. The effect of sticking on the profile of the radical distribution is presented  相似文献   

6.
研究了悬浮液雾化进样感耦等离子体原子发射光谱基本参数——等离子体激发温度。实验用Ti线为温标线,并采用多谱线法测量溶液雾化进样和0.05%二氧化钛悬浮液雾化进样等离子体激发温度。测定结果显示这两种雾化进样方式的等离子体激发温度接近,为5 000~6 000 K。随感耦等离子体原子发射光谱仪器功率的提高,悬浮液雾化进样等离子体激发温度也相应增大,但增大幅度较小。悬浮液雾化进样等离子体发射光谱分析,若单纯改变仪器功率对于颗粒在等离子体中的原子化效率没有显著的变化,因此对于分析结果没有显著的改善作用。  相似文献   

7.
VUV emission spectra of plasmas produced by focusing laser radiation with intensity of 1010–1011 W/cm2 on carbon and aluminum targets were studied. Using the partial local thermodynamic equilibrium model for an electron density exceeding 1017 cm?3, the spectroscopic diagnostics and the analysis of ion composition of plasmas were carried out. The electron temperatures determined for carbon and aluminum plasmas from the ratio of intensities of ionic lines were found to be 8±3 eV and 11±4 eV, respectively. Stark broadening of aluminum lines was measured and parameters of electron broadening were determined. Using the spatially resolved measurement of Stark line broadening, the spatial density distribution and the law of electron gas expansion were found. The electron gas in the hot region of size 5 mm with an average density of (5±2) 1017cm ?3 experienced one-dimensional expansion according to the law 1/z 1.1 with increasing distance z from the target.  相似文献   

8.
通过发射光谱测量和拟合不同的微波脉宽和气压下C波段微波放电的氮气等离子体振动温度、转动温度和电子激发温度。气压在266~400Pa时,等离子体的振动温度为(2700±100)K,电子激发温度为(0.32±0.015)eV,转动温度随脉宽增加而上升,实验中测得的最大转动温度为370K。偏离266~400Pa时,振动温度和电子激发温度同时出现了下降的趋势,而转动温度出现了上升的趋势。这意味着电子激发温度和振动温度具有很强的关联性。  相似文献   

9.
等离子体刻蚀工艺的物理基础   总被引:1,自引:0,他引:1  
戴忠玲  毛明  王友年 《物理》2006,35(8):693-698
介绍了等离子体刻蚀工艺背景以及有关等离子体刻蚀机理的研究进展,综述了等离子体刻蚀机理的研究方法,着重阐述了电容耦合放电和电感耦合放电等离子体物理特性,特别是双频电容耦合放电等离子体和等离子体鞘层研究中的关键问题。  相似文献   

10.
Results of an experimental study of mass transfer are presented for extended systems of dust particles observed in capacitively coupled RF discharge plasmas. The Green-Kubo relation and the Langevin equation are validated as applied to dust grain dynamics in laboratory plasmas. A procedure is proposed for evaluating the temperature, friction coefficient, and characteristic oscillation frequency for dust grains. Measured characteristics of the dust subsystem (diffusion coefficient, pair correlation function, and friction coefficient) are compared with available theoretical and numerical results.  相似文献   

11.
This article reports a method for surface modification of multi-walled carbon nanotubes (MWNTs) using a low-pressure capacitively coupled RF glow-discharge. Ar/C2H6 and Ar/C2H6/O2 gaseous mixtures were used to produce non-polar (np-) and polar (p-) coatings, respectively, onto MWNTs. After 5 min of plasma treatment at 20 W and 20 torr, strongly hydrophobic and non-electrically conductive np-MWNTs were produced. The p-MWNTs were strongly hydrophilic and showed no measurable hydrophobic recovery 2 weeks after treatment. Aqueous suspensions of p-MWNTs remained stable and free of agglomerates after being boiled. The ζ-potential of p-MWNT nanofluids was −40.3 mV, indicating a highly stable dispersion.  相似文献   

12.
Abstract

This review article describes some existing microplasma sources and their applications in analytical chemistry. These microplasmas mainly include direct current glow discharge (DC), microhollow-cathode discharge (MHCD) or microstructure electrode (MSE), dielectric barrier discharge (DBD), capacitively coupled microplasmas (CCμPs), miniature inductively coupled plasmas (mICPs), and microwave-induced plasmas (MIPs). The historical development and recent advances in these microplasma techniques are presented. Fundamental properties of the microplasmas, the unique features of the reduced size and volume, as well as the advantageous device structures for chemical analysis are discussed in detail, with the emphasis toward detection of gaseous samples. The analytical figures of merit obtained using these microplasmas as molecular/elemental-selective detectors for emission spectrometry and as ionization sources for mass spectrometry are also given in this review article.  相似文献   

13.
Changes of the electron dynamics in hydrogen (H2) radio-frequency (RF) inductively coupled plasmas are investigated using a hairpin probe and an intensified charged coupled device (ICCD). The electron density, plasma emission intensity, and input current (voltage) are measured during the E to H mode transitions at different pressures. It is found that the electron density, plasma emission intensity, and input current jump up discontinuously, and the input voltage jumps down at the E to H mode transition points. And the threshold power of the E to H mode transition decreases with the increase of the pressure. Moreover, space and phase resolved optical emission spectroscopic measurements reveal that, in the E mode, the RF dynamics is characterized by one dominant excitation per RF cycle, while in the H mode, there are two excitation maxima within one cycle.  相似文献   

14.
Nonlocal phenomena in electron kinetics of collisional gas discharge plasmas, their kinetic treatment by a nonlocal approach, and relevant experimental results are reviewed in this paper. Using the traditional two-term approximation for the electron distribution function, a general method to analyze electron kinetics in nonuniform plasmas in DC and RF fields for atomic gases is presented for the nonlocal case, when the electron energy relaxation length exceeds the characteristic spatial scale of bounded plasmas. The nonlocal method, which is based on the great difference between the electron mean free path for the momentum transfer and the electron energy relaxation length, considerably simplifies the solution of the kinetic equation and, in a number of cases, allows one to obtain analytical and semi-analytical solutions. The main simplification is achieved for trapped electrons by averaging the Boltzmann equation over space and fast electron motion. Numerous examples of spatial nonlocality are considered in the positive column and near the electrodes of DC glow discharges, in spatial relaxation of the electron distribution and in striations, and in capacitively and inductively coupled low-pressure RF discharges. The modeling of fast beam-like electrons is based on a continuous-energy-loss approximation with the assumption of forward scattering. Simple analytic expressions for the fast electron spectrum are obtained in cathode regions of DC discharges with planar and hollow cathodes  相似文献   

15.
We present the design and initial operation of a 96-kV 40-A magnetron injection gun for a 1.5-MW 110-GHz gyrotron. A critical parameter for the successful application of this electron gun is the uniformity of electron emission. The current-voltage curve of emission, at a series of temperatures, is measured. Analysis indicates that the work function of the emitter is 1.6 eV with a (total) spread of 0.07 /spl plusmn/ 0.01 eV. Measurement of the azimuthal emission uniformity with a rotating probe indicates that the work function variation around the azimuth, the global spread, is 0.04 /spl plusmn/ 0.02 eV. The spread due to local (microscopic scale) work function variations is then calculated to be 0.06 /spl plusmn/ 0.02 eV. Temperature variation can be ruled out as the cause of the observed emission nonuniformity.  相似文献   

16.
For pt.I see ibid., vol.23, no.1, p.65-73 (1995). In part I, we developed the electromagnetic model and analyzed the plasma kinetic behavior for the recently developed inductively coupled plasma sources (ICPS). The analytic forms demonstrated that the induced RF wave in ICPS is primarily dampened by a collisionless dissipation mechanism, In this paper, the 2-D coupled damping effect is further discussed. A criterion is given to describe the magnitude of coupled damping relative to collisions. The numerical integrals show that the coupled damping is obvious only as the RF phase velocity is close to plasma thermovelocity. The electron velocity distribution function was calculated for different cases, Also analyzed were the geometry and frequency effects. It was found that appropriately adjusting the reactor height and coil current frequency could strengthen the coupled damping effect so as to benefit extracting the energy from the induced RF wave to the plasmas  相似文献   

17.
利用发射光谱方法对真空弧离子源放电等离子体特性进行了诊断。同时,基于局域热力学平衡等离子体的发射光谱理论,建立了等离子体的发射光谱拟合模型,对真空弧放电等离子体光谱进行了分析。针对TiH真空弧离子源,分别对330~340nm与498~503nm范围内Ti+离子与Ti原子的发射光谱进行了对比拟合,获得了较好的符合度,解决了传统Boltzmann斜率法计算等离子体温度需要孤立的不受附近谱线干扰的线状光谱的困难。最后,利用该方法计算了真空弧离子源在不同放电条件下的等离子体发射光谱、等离子体密度与温度参数。结果表明,TiH真空弧放电等离子体温度在1eV左右,同时,放电所产生的氢原子要远远大于金属原子,并且随着真空弧离子源馈入功率的增加,TiH电极中解吸附出来的氢比蒸发出来的金属增加得更多,这有利于TiH离子源在中子发生器方面的应用。  相似文献   

18.
Large-volume atmospheric-pressure plasmas have been the subject of previous research as a laboratory simulation of ball lightning, but measurements of the plasma properties have been unavailable. The present investigation employed a non-resonant microwave chamber with a 1000-W microwave-source operating at 2.45-GHz frequency to produce large volume (up to 0.8 L) plasmas that persisted after microwave shutoff. A Langmuir probe was used to measure electron density and temperature, and the highest values measured were 1010 cm-3 at 0.67 eV, respectively. Plasma lifetimes after microwave shutoff were also measured, using both a photocell and a video camera, and were found to average 200 ms. A working hypothesis of the formation of shared electron orbitals in dense gas discharges is put forth to explain this phenomenon  相似文献   

19.
Rb+ to Rb2+ and 2K+ to K + K2+ each provide a reaction with a net enthalpy equal to the potential energy of atomic hydrogen. The presence of these gaseous ions with thermally dissociated hydrogen formed a plasma having strong VUV emission with a stationary inverted Lyman population. Significant Balmer α line broadening of 18 and 9 eV was observed from a rt-plasma of hydrogen with KNO3, and RbNO3, respectively, compared to 3 eV from a hydrogen microwave plasma. The reaction was exothermic since excess power of about 20 mW/cc was measured by Calvet calorimetry. We propose an energetic catalytic reaction involving a resonance energy transfer between hydrogen atoms and Rb+ or 2K+ to form a very stable novel hydride ion. Its predicted binding energy of 3.0471 eV with the fine structure was observed at 4071 Å, and its predicted bound-free hyperfine structure lines matched those observed for about 40 lines to within.01 percent. Characteristic emission from each catalyst was observed. This catalytic reaction may pump a CW HI laser.  相似文献   

20.
Intense (10/sup 11/ particles/1 /spl mu/s /spl sim/300 MeV/u) heavy ion beams are generated in the heavy-ion synchrotron (SIS) of the GSI-Darmstadt facility. Large volumes of strongly coupled plasmas are produced by heavy ion beam interaction with solid targets, with plasma densities close to the solid state, pressures of about 100 kbar, and temperatures of up to 1 eV, with relevance for equation of state (EOS) of matter, astrophysics, and low-entropy shock compression of solids. The plasmas created by ion beam interaction with metallic converters and cryogenic crystals were studied by backlighting shadowgraphy and by time-resolved spectroscopy in the visible and vacuum ultraviolet ranges. Low entropy weak shock waves induced by the ion beams in the metal-plexiglass multilayered targets were visualized by time resolved schlieren measurements, revealing induced multiple shockwaves with pressures higher than 15 kbar in a plexiglass window and propagation velocities up to 35% higher than the speed of sound in plexiglass at room temperature. To get an insight into the plasma dynamics, both types of experiments are simulated by the BIG-2 two-dimensional hydrodynamic code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号