首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
全氟烷基碘的加成反应一直活跃在氟化学中,即使近来也依然受到注意,这是因为由它们出发可做许多有用的中间体,其中氟烷基取代的醇可做织物表面处理剂,氟烷基取代的环氧化合物可做润滑剂。我们曾用引发剂,使ψ—碘代全氟烷基磺酰氟与多键类化合物在较温和条件下进行加成。黄维垣教授等用NaHCO_3—K_3[Fe(CN)_6]引发Cl(CF_2)_(4.6)I与烯丙醇顺利加成。  相似文献   

2.
Keggin结构杂多酸的有机衍生物[SiW_(11)(RSiOSiR)O_(39)]~(4-)(R=C_2H_5、C_6H_5、NC(CH_2)_3、C_3H_7)已有报道,根据其红外光谱中出现1040cm~(-1)(Si-O-Si的振动峰),Knoth提出了图1的结构。从中可以看出RSiOSiR基占据了Keggin结构杂多酸[SiW_(11)O_(39)]~(8-)的空缺齿顶位置。当然处于齿顶位置的硅原子和中心位置的硅原子的化学环境显然是不同的,所以可用~(29)Si NMR来鉴定这两种硅原子,并推测其结构。  相似文献   

3.
Treatment of the acyclic zwitterionic pentacoordinate silicate F(3)MeSiCH(2)NMe(2)H with 1 molar equiv of Me(3)SiOC(6)H(4)OSiMe(3), Me(3)SiOCH(2)C(O)OSiMe(3), Me(3)SiOC(Ph)=NOSiMe(3), or Me(3)SiOC(O)C(O)OSiMe(3) (solvent CH(3)CN, room temperature) yielded the respective monocyclic zwitterionic pentacoordinate silicates (11a), (12a), (13a), and (14a), along with 2 molar equiv of Me(3)SiF. The derivatives 11b-14b with a 2,2,6,6-tetramethylpiperidinio substituent instead of the dimethylammonio group were prepared analogously, starting from F(3)MeSiCH(2)NR(2)H (NR(2)H = 2,2,6,6-tetramethylpiperidinio). Single-crystal X-ray diffraction studies showed that the Si-coordination polyhedra of 11a.1.5CH(3)CN, 12a-14a, and 11b-14b are distorted trigonal bipyramids, the axial positions being occupied by the fluorine atom and one of the two oxygen atoms (12a/12b, carboxylate oxygen atom; 13a/13b, carbon-linked oxygen atom). These results are in agreement with the NMR data ((1)H, (13)C, (19)F, (29)Si) obtained for these compounds in solution. The chiral (C(1) symmetry) zwitterions 11a-14a and 11b-14b exist as pairs of (A)- and (C)-enantiomers in solution. VT (1)H NMR studies with 11b-14b in CH(3)CN in the temperature range 25-85 degrees C gave no indications for an enantiomerization process [(A)/(C)-enantiomerization] at the silicon atom.  相似文献   

4.
The compounds Cl 3SiOCH 2CH 2NMe 2 ( 1) and Cl 2HSiOCH 2CH 2NMe 2 ( 2) were prepared by reactions of lithium 2-(dimethylamino)ethanolate with SiCl 4 and HSiCl 3. The analogous reaction with H 2SiCl 2 gave ClH 2SiOCH 2CH 2NMe 2 ( 3), but only in a mixture with Cl 2HSiOCH 2CH 2NMe 2 ( 2), from which it could not be separated. All compounds were characterized by IR and NMR ( (1)H, (13)C, (29)Si) spectroscopy, 1 and 2 by elemental analyses and by determination of their crystal structures. Cl 3SiOCH 2CH 2NMe 2 ( 1) and Cl 2HSiOCH 2CH 2NMe 2 ( 2) crystallize as monomeric ring compounds with pentacoordinate silicon atoms participating in intramolecular Si-N bonds [2.060(2) A ( 1), 2.037(2) A ( 2)]. The dative bonds in 1 and 2 between the silicon and nitrogen atoms could also be proven to exist at low temperatures in solution in (1)H, (29)Si-HMBC-NMR experiments by detection of the scalar coupling between the (29)Si and the protons of the NCH 2 and NCH 3 groups. A function describing the chemical shift delta exp (29)Si dependent on the chemical shifts of the individual equilibrium components, the temperature, and the free enthalpy of reaction was worked out and fitted to the experimental VT-NMR data of 1 and 2. This provided values of the free reaction enthalpies of Delta G = -28.8 +/- 3.9 kJ x mol (-1) for 1 and Delta G = -22.3 +/- 0.4 kJ x mol (-1) for 2 and estimates for the chemical shifts of open-chain (index o) and ring conformers (index r) for 1 of delta r = -94 +/- 2 ppm and delta o = -36 +/- 5 ppm and for 2 of delta r = -82 +/- 1 ppm and delta o = -33 +/- 4 ppm. The value of delta r for 1 is very close to that obtained from a solid-state (29)Si MAS NMR spectrum. Quantumchemical calculations (up to MP2/TZVPP) gave largely differing geometries for 1 (with a Si...N distance of 3.072 A), but well reproduced the geometry of 2. These differences are due to Cl...H and Cl...C repulsions and solid state effects, which can be modeled by conductor-like screening model calculations and also rationalized in terms of the topology of the electron density, which was analyzed in terms of the quantum theory of atoms in molecules.  相似文献   

5.
The title compound, [(Me3Si)2N]2Si: (1), was prepared by the reduction of [(Me3Si)2N]2SiBr2 (2) with potassium graphite at -78 degrees C. Unlike the corresponding germanium and tin compounds, 1 is unstable, but it can be studied in solution at low temperatures. The 29Si NMR chemical shift of 1 measured at -20 degrees C was 223.9 ppm, in good agreement with a value obtained from model calculations of 233 ppm. Reaction of solutions of 1 with methanol or phenol gave the trapping products expected for the silylene, [(Me3Si)2N]2Si(H)OR (R = CH3, C6H5).  相似文献   

6.
The tris(triphenylphosphine)copper(I) complexes [(PPh3)3CuX] for X = Cl (1), Br (2), I (3), ClO4 (4), BF4 (5), [(PPh3)3CuCl].CH3CN (1a), [Cu(PPh3)3(CH3CN)]X for X = ClO4 (6), BF4 (7), and [Cu(PPh3)3(CH3CN)]X.CH3CN for X = SiF5 (8), PF6 (9) have been studied by solid state 31P CP/MAS NMR spectroscopy together with single crystal X-ray diffraction for compounds (6)-(9), the latter completing the availability of crystal structure data for the series. Compounds (1)-(5) form an isomorphous series in space group P3 (a approximately 19, c approximately 11 A) with three independent molecules in the unit cell, all disposed about 3-fold symmetry axes. Average values (with estimated standard deviations) for the P-Cu-P, P-Cu-X bond angles and Cu-P bond lengths in compounds (1)-(3) are 110.1(6) degrees, 108.8(6) degrees and 2.354(8)A and 115.2(6) degrees, 102.8(9) degrees and 2.306(9)A for compounds (4) and (5). For the acetonitrile solvated compound (1a), the corresponding parameters are 115(4) degrees, 103(3) degrees and 2.309(3)A. The solid state 31P CP/MAS NMR quadrupole distortion parameters, dnu Cu, for (1)-(3) and (1a) are all less than 1 x 10(9) Hz2, despite the changes in donor properties of the halide in (1)-(3), and the coordination geometry of the P3CuX core in (1a). Change of anion to ClO4- and BF4- in compounds (4) and (5) results in a significant increase of dnu Cu to 4.4-5.2 10(9) Hz2 and 5.2-6.0 x 10(9) Hz2, respectively. Compounds (6) and (7) crystallise as isomorphous [Cu(PPh3)3(CH3CN)]X salts in space group Pbca, (a approximately 17.6, b approximately 22.3, c approximately 24.2 A), while compounds (8) and (9) crystallize as isomorphous acetonitrile solvated salts [Cu(PPh3)3(CH3CN)]X.CH3CN in space group P1(a approximately 10.5, b approximately 13.0, c approximately 19.5 A, alpha approximately 104, beta approximately 104, gamma approximately 94 degrees). The P3CuN angular geometries in all four compounds are distorted from tetrahedral symmetry with average P-Cu-P, P-Cu-N angles and Cu-P bond lengths of 115(4) degrees, 103(4) degrees and 2.32(1)A, with dnu Cu ranging between 1.3 and 2.5 x 10(9) Hz2. The solid state 29Si CP/MAS NMR spectrum of the pentafluorosilicate anion in compound (8) is also reported, affording 1J(29Si, 19F) = 146 Hz.  相似文献   

7.
The zwitterionic lambda(5)Si,lambda(5)Si'-disilicates 1-8 were synthesized and characterized by solid-state and solution NMR spectroscopy. In addition, compounds 26 H(2)O, 32 CH(3)CN, 45/2 CH(3)CN, 6CH(3)OH, 7, and 8CH(3)OHCH(3)CN were studied by single-crystal X-ray diffraction. The optically active (Delta,Delta,R,R,R,R)-configured compounds 1-8 contain two pentacoordinate (formally negatively charged) silicon atoms and two tetracoordinate (formally positively charged) nitrogen atoms. One (ammonio)alkyl group is bound to each of the two silicon centers, and two tetradentate (R,R)-tartrato(4-) ligands bridge the silicon atoms. Although these lambda(5)Si,lambda(5)Si'-disilicates contain SiO(4)C skeletons, some of them display a remarkable stability in aqueous solution as shown by NMR spectroscopy and ESI mass spectrometry.  相似文献   

8.
Diruthenium compounds containing one omega-alkene-alpha-carboxylate ligand, Ru2Cl(D(3,5-Cl2Ph)F)3(O2C(CH2)nCH=CH2) (n=1 (1a) and 2 (1b)), were prepared from the reaction between Ru2Cl(D(3,5-Cl2Ph)F)3(O2CCH3) (D(3,5-Cl2Ph)F=N,N'-bis(3,5-dicholorophenyl)formamidinate) and the corresponding omega-alkene-alpha-carboxylic acid. Compounds 1a and 1b both underwent olefin cross metathesis reactions catalyzed by (Cy3P)2Cl2Ru(=CHPh) to afford the dimerized compounds [Ru2Cl(D(3,5-Cl2Ph)F)3]2(mu-O2C(CH2)nCH=CH(CH2)nCO2) (n=1 (2a) and 2 (2b)). Similarly, diruthenium compounds containing two omega-alkene-alpha-carboxylate ligands, cis-Ru2Cl(D(3,5-Cl2Ph)F)2(O2C(CH2)nCH=CH2)2 (n=1 (3a), 2 (3b), and 3 (3c)), were prepared by substituting the acetate ligands in cis-Ru2Cl(D(3,5-Cl2Ph)F)2(O2CCH3)2 with the corresponding omega-alkene-alpha-carboxylate ligands. Compounds 3 exhibited different reactivity under olefin metathesis conditions: both 3b and 3c underwent the intramolecular ring closing reaction quantitatively to afford compounds cis-Ru2(D(3,5-Cl2Ph)F)2(mu-O2C(CH2)nCH=CH2(CH2)nCO2)Cl with n=2 (4b) and 3 (4c), respectively, but 3a displayed no metathesis reactivity. Molecular structures of compounds 1a/1b, 2a/2b, 3a/3b, and 4b were established via X-ray diffraction studies, confirming the formation of cross and ring closing metathesis products. Voltammograms of compounds 2 are nearly identical to those of compounds 1, indicating the absence of electronic interactions mediated by the tether derived from olefin metathesis.  相似文献   

9.
The addition compound Cl(3)SiSiCl(3)·TMEDA was formed quantitatively by treatment of Cl(3)SiSiCl(3) with tetramethylethylenediamine (TMEDA) in pentane at room temperature. The crystal structure of Cl(3)SiSiCl(3)·TMEDA displays one tetrahedrally and one octahedrally bonded Si atom (monoclinic, P2(1)/n). (29)Si CP/MAS NMR spectroscopy confirms this structure. Density functional theory (DFT) calculations have shown that the structure of the meridional isomer of Cl(3)SiSiCl(3)·TMEDA is 6.3 kcal lower in energy than that of facial coordinate species. Dissolving of Cl(3)SiSiCl(3)·TMEDA in CH(2)Cl(2) resulted in an immediate reaction by which oligochlorosilanes Si(n)Cl(2n) (n = 4, 6, 8, 10; precipitate) and the Cl(-)-complexed dianions [Si(n)Cl(2n+2)](2-) (n = 6, 8, 10, 12; CH(2)Cl(2) extract) were formed. The constitutions of these compounds were confirmed by MALDI mass spectrometry. Additionally, single crystals of [Me(3)NCH(2)CH(2)NMe(2)](2)[Si(6)Cl(14)] and [Me(3)NCH(2)CH(2)NMe(2)](2)[Si(8)Cl(18)] were obtained from the CH(2)Cl(2) extract. We found that Cl(3)SiSiCl(3)·TMEDA reacts with MeCl, forming MeSiCl(3) and the products that had been formed in the reaction of Cl(3)SiSiCl(3)·TMEDA with CH(2)Cl(2). X-ray structure analysis indicates that the structures of [Me(3)NCH(2)CH(2)NMe(2)](2)[Si(6)Cl(14)] (monoclinic, P2(1)/n) and [Me(3)NCH(2)CH(2)NMe(2)](2)[Si(8)Cl(18)] (monoclinic, P2(1)/n) contain dianions adopting an "inverse sandwich" structure with inverse polarity and [Me(3)NCH(2)CH(2)NMe(2)](+) as countercations. Single crystals of SiCl(4)·TMEDA (monoclinic, Cc) could be isolated by thermolysis reaction of Cl(3)SiSiCl(3)·TMEDA (50 °C) in tetrahydrofuran (THF).  相似文献   

10.
The covalent linkages formed during functionalization of MCM-41 mesoporous molecular sieves with five chloroalkylsilanes ((EtO)3Si(CH2Cl), (MeO)3Si(CH2CH2CH2Cl), Cl3Si(CH2CH2CH3), Cl2Si(CH3)(CH2Cl) and Cl2Si(CH3)2) have been investigated using high-resolution solid-state NMR spectroscopy and DFT calculations. Structural information was obtained from 1H-13C and 1H-29Si heteronuclear (HETCOR) NMR spectra, in which high resolution in the 1H dimension was obtained by using fast MAS. The 1H-13C HETCOR results provided the assignments of 1H and 13C resonances associated with the surface functional groups. Sensitivity-enhanced 1H-29Si HETCOR spectra, acquired using Carr-Purcell-Meiboom-Gill refocusing during data acquisition, revealed the identity of 29Si sites (Qn, Tn, and Dn) and the location of functional groups relative to these sites. Optimal geometries of local environments representing the Qn, Tn and Dn resonances were calculated using molecular mechanics and ab initio methods. Subsequently, DFT calculations of 29Si, 13C, and 1H chemical shifts were performed using Gaussian 03 at the B3LYP/6-311++G(2d,2p) level. The theoretical calculations are in excellent accord with the experimental chemical shifts. This work illustrates that state-of-the-art spectroscopic and theoretical tools can be used jointly to refine the complex structures of inorganic-organic hybrid materials.  相似文献   

11.
H(2)SiCl(2) and substituted pyridines (Rpy) form adducts of the type all-trans-SiH(2*)Cl(2)2 Rpy. Pyridines with substituents in the 4- (CH(3), C(2)H(5), H(2)C=CH, (CH(3))(3)C, (CH(3))(2)N) and 3-positions (Br) give the colourless solids 1 a-f. The reaction with pyrazine results in the first 1:2 adduct (2) of H(2)SiCl(2) with an electron-deficient heteroaromatic compound. Treatment of 1 d and 1 e with CHCl(3) yields the ionic complexes [SiH(2)(Rpy)(4)]Cl(2*)6 CHCl(3) (Rpy=4-methylpyridine (3 d) and 4-ethylpyridine (3 e)). All products are investigated by single-crystal X-ray diffraction and (29)Si CP/MAS NMR spectroscopy. The Si atoms are found to be situated on centres of symmetry (inversion, rotation), and the Si-N distances vary between 193.3 pm for 1 c (4-(dimethylamino)pyridine complex) and 197.3 pm for 2. Interestingly, the pyridine moieties are coplanar and nearly in an eclipsed position with respect to the SiH(2) units, except for the ethyl-substituted derivative 1 e, which shows a more staggered conformation in the solid state. Calculation of the energy profile for the rotation of one pyridine ring indicates two minima that are separated by only 1.2 kJ mol(-1) and a maximum barrier of 12.5 kJ mol(-1). The (29)Si NMR chemical shifts (delta(iso)) range from -145.2 to -152.2 ppm and correlate with the electron density at the Si atoms, in other words with the +I and +M effects of the substituents. Again, compound 1 e is an exception and shows the highest shielding. The bonding situation at the Si atoms and the (29)Si NMR tensor components are analysed by quantum chemical methods at the density functional theory level. The natural bond orbital analysis indicates polar covalent Si-H bonds and very polar Si-Cl bonds, with the highest bond polarisation being observed for the Si-N interaction, which must be considered a donor-acceptor interaction. An analysis of the topological properties of the electron distribution (AIM) suggests a Lewis structure, thereby supporting this bonding situation.  相似文献   

12.
The first crystallographic data for sigma-bonded alkylcobalt(III) phthalocyanine complexes are reported. A single-crystal X-ray structure of CH(3)CH(2)Co(III)Pc (Pc = dianion of phthalocyanine) reveals that the solid consists of centrosymmetric face-to-face dimers in which the CH(3)CH(2)Co(III)Pc units retain their square pyramidal geometry. The structure appears to be the first one reported for a five-coordinate RCo(III)(chelate) complex with an electron-deficient equatorial system. The Co-C bond in CH(3)CH(2)Co(III)Pc (2.031(5) A) is the longest found in five-coordinate RCo(III)(chel) complexes (R = simple primary alkyl group). Another X-ray study demonstrates that CH(3)Co(III)Pc(py) has a distorted octahedral geometry with axial bonds of very similar length to those in methylcobalamin. The axial bonds are shorter than those in its octaethylporphyrin analogue, in accordance with a weaker trans axial influence in six-coordinate complexes containing an electron-deficient phthalocyanine equatorial ligand. A different trend has been observed for five-coordinate RCo(III)(chel) complexes: electron-rich equatorial systems seem to make the Co-C axial bond shorter. Kinetic data for the homolysis of RCo(III)Pc complexes (R = Me, Et) in dimethylacetamide are also reported. Homolysis of ethyl derivatives is faster. The Co-C bond dissociation energies (BDEs) for the pyridine adducts of the methyl and the ethyl derivative are 30 +/- 1 and 29 +/- 1 kcal/mol, respectively. The BDE for CH(3)CoPc(py) is considerably lower than that for MeCbl despite the very similar lengths of the axial bonds in the two complexes. The results of this work do not support any correlation between the Co-C bond length and the bond strength as defined by BDE.  相似文献   

13.
Mononuclear organosilicon tri- and tetradendrons of the zero, first, and second generations, containing double bonds in the internal near-core molecular sphere, internal C≡C groups, and terminal Me, CH=CHSiMe3, and C≡CH substituents at the central silicon atom were synthesized. Their IR and 1H, 13C, 29Si NMR spectra were studied. The molecular weights of the dendrimers obtained were evaluated, and key parameters of these compounds are presented.  相似文献   

14.
The synthesis and characterization of the two iron chlorin complexes [Fe(III)(TPC)(NH(2)CH(CO(2)CH(3))(CH(CH(3))(2)))(2)]CF(3)SO(3) (1) and Fe(II)(TPC)[(NH(2)CH(CO(2)CH(3))(CH(CH(3))(2))](2) (2) are reported. The crystal structure of complex 1 has been determined. The X-ray structure shows that the porphyrinate rings are weakly distorted. The metal-nitrogen distances to the reduced pyrrole N(4), 2.034(4) A, and to the pyrrole trans to it N(2), 2.012(4) A, are longer than the distances to the two remaining nitrogens [N(1), 1.996(4) A, and N(3), 1.984(4) A], leading to a core-hole expansion of the macrocycle due to the reduced pyrrole. The (1)H NMR isotropic shifts at 20 degrees C of the different pyrrole protons of 1 varied from -0.8 to -48.3 ppm according to bis-ligated complexes of low-spin ferric chlorins. The EPR spectrum of [Fe(TPC)(NH(2)CH(CO(2)CH(3))(CH(CH(3))(2)))(2)]CF(3)SO(3) (1) in solution is rhombic and gives the principal g values g(1) = 2.70, g(2) = 2.33, and g(3) = 1.61 (Sigmag(2) = 15.3). These spectroscopic observations are indicative of a metal-based electron in the d(pi) orbital for the [Fe(TPC)(NH(2)CH(CO(2)CH(3))(CH(CH(3))(2)))(2)]CF(3)SO(3) (1) complex with a (d(xy))(2)(d(xz)d(yz))(3) ground state at any temperature. The X-ray structure of the ferrous complex 2 also shows that the porphyrinate rings are weakly distorted. The metal-nitrogen distances to the reduced pyrrole N(4), 1.991(5) A, and to the pyrrole trans to it N(2), 2.005(6) A, are slightly different from the distances to the two remaining nitrogens [N(1), 1.988(5) A, and N(3), 2.015(5) A], leading to a core-hole expansion of the macrocycle due to the reduced pyrrole.  相似文献   

15.
A family of new Fischer-type rhenium(III) benzoyldiazenido-2-oxacyclocarbenes of formula [(ReCl2[eta1-N2C(O)Ph][=C(CH2)nCH(R)O](PPh3)2][n = 2, R = H (2), R = Me (3); n = 3, R = H (4), R = Me (5)] have been prepared by reaction of [ReCl2[eta2-N2C(Ph)O](PPh3)2] (1) with omega-alkynols, such as 3-butyn-1-ol, 4-pentyn-1-ol, 4-pentyn-2-ol, 5-hexyn-2-ol in refluxing THF. The correct formulation of the carbene derivatives 2-5 has been unambiguously determined in solution by NMR analysis and confirmed for compounds 2-4 by X-ray diffraction methods in the solid state. All complexes are octahedral with the benzoyldiazenido ligand, Re[N2C(O)Ph], adopting a "single bent" conformation. The coordination basal plane is completed by an oxacyclocarbene ligand and two chlorine atoms. Two triphenylphosphines in trans positions with respect to each other complete the octahedral geometry around rhenium. The reactivity of 1 towards different alkynes and alkenes including propargyl- and allylamine has been also studied. With propargyl amine, monosubstituted or bisubstituted complexes, [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2C triple bond CH]n(PPh3)(3-n)][n= 1 (6); n = 2 (7)], have been isolated depending on the reaction conditions. In contrast, the reaction with allylamine gave only the disubstituted complex [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2CH=CH2]2(PPh3)] (8). The molecular structure of the monosubstituted adduct has been confirmed by X-ray analysis in the solid state.  相似文献   

16.
Niemeyer M 《Inorganic chemistry》2006,45(22):9085-9095
The scope of hypersilyl potassium, KHyp [Hyp = Si(SiMe3)3], as a silylation or deprotonation agent for some rare-earth bis(trimethylsilyl)amides has been explored. Thus, the reaction with Yb{N(SiMe3)2}2 affords the addition product [K][YbHyp{N(SiMe3)2}2] (2) in high yield, which contains a three-coordinate ytterbium atom, therefore representing the first example of a lanthanide silyl with a coordination number lower than 6. In contrast, deprotonation on the periphery is observed with the tris(amides) Ln{N(SiMe3)2}3 (Ln = Y, Yb) and compounds of the type [K][CH2Si(Me)2N(SiMe3)Ln{N(SiMe3)2}2] (Ln = Y (3), Yb (4)) are isolated. Crystallization of 3 from a mixture of benzene and heptane afforded the bis(benzene) solvate [(C6H6)2K][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (3a). The reaction between the strong bases nBuLi/tetramethylenediamine (TMEDA) or tBuLi with Y{N(SiMe3)2}3 or Yb{N(SiMe3)2}3 yielded the deprotonation product [(tmeda)Li][CH2Si(Me)2N(SiMe3)Y{N(SiMe3)2}2] (6) and the reduction product [LiYb{N(SiMe3)2}3] (7), respectively. Instead of the expected bimetallic product, the reaction between YbI(2) and 2 equiv of 3 gave the neutral complex [Y{CH2Si(Me)2N(SiMe3)}{N(SiMe3)2}(thf)] (8) in good yield. The compounds have been characterized by melting point, elemental analysis, IR spectroscopy, and X-ray crystallography and for selected species by 1H, 13C, 29Si, and 171Yb NMR spectroscopy. For 3a and 4, the nature of the bonding between the carbanionic centers and the lanthanide and potassium cations was studied by density functional theory calculations.  相似文献   

17.
(29)Si-(13)C spin-spin couplings over one, two, and three bonds as well as other NMR parameters [delta((29)Si), delta((13)C), delta((1)H), (1)J((13)C-(1)H), and (2)J((29)Si-C-(1)H)] were calculated and measured for a series of trimethylsilylated alcohols of the types Me(3)Si-O-(CH(2))(n)CH(3) and Me(3)Si-O-CH(3-n)R(n)(n = 0-3; R = Me, Ph, or Vi). The signs of the coupling constants determined for selected compounds can likely be extended to all such compounds, as supported by theoretical calculations. Similar to couplings between other pairs of nuclei, the 2-bond and 3-bond (29)Si-O-(13)C couplings are of opposite signs ((2)J > 0 and (3)J < 0), and their relative magnitudes depend on the extent of branching at the alpha-carbon.  相似文献   

18.
A series of silylated carboxonium ions, 2a-6a, were prepared as long-lived species by treating triethylsilane and triphenylmethyl tetrakis(pentafluorophenyl)borate (Ph3C(+)B(C6F5)4-) with ketones, enones, carbonates, amides, and urea in CD2Cl2 solution. They were characterized by 13C and 29Si NMR spectroscopy at -78 degrees C. The NMR study indicates that the silylated carbonyl compounds are resonance hybrids of oxocarbenium and carboxonium ions, while the latter are the major contributors to the overall structures. The structure and 13C and 29Si NMR chemical shifts of the model trimethylsilylated carboxonium ions were also calculated by density functional theory/IGLO methods. The calculated results agree well with the experimental data.  相似文献   

19.
随着芳烃需求量的增加,低分子烃的芳构化受到广泛重视.由于HZSM-5的独特骨架结构及酸性,使其对低分子烃有良好芳构化性能~[1~3],但研究工作大多放在HZSM-5本身的硅铝比调变及加入某些金属(如Ga,Zn)来提高其芳构化性能~[4~7],而以非金属对其进行改性处理则很少见.本文以Si(CH_3)_3CI对HZSM-5进行CVD处理,并对其酸性及对正已烷芳构化能力进行了考察,研究了催化剂的结焦情况.  相似文献   

20.
Bis(tert-butylsilyl)decatungstophosphate (n-Bu4N)3[(gamma-PW10O36)(t-BuSiOH)2] (1) has been synthesized through phase-transfer conditions, by reaction of t-BuSiCl3 with Cs7[(gamma-PW10O36)].xH2O. This new hybrid anion has been characterized by elemental analysis, X-ray crystallography, multinuclear solution and solid-state NMR, and infrared spectroscopy. Crystals of 1 are monoclinic, space group C2/c, with lattice constants a = 44.762(10) A, b = 19.032(4) A, c = 22.079(8) A, beta = 98.9(2) degrees, and Z = 8. Anion 1 has nominal Cs symmetry and displays an "open structure" with two t-BuSiOH groups anchored to the (gamma-PW10O36) framework. The two t-BuSiOH units are nonequivalent as confirmed by 29Si CP-MAS NMR and by diffuse reflection infrared spectroscopy. The two OH groups are linked through one H-bond (dO-O = 2.63 A). According to 29Si and 183W NMR, 1 adopts a more symmetrical conformation (C2v) in solution. Anion 1 reacts cleanly in homogeneous conditions with Me2SiCl2 to yield (n-Bu4N)3[(gamma-PW10O36)(t-BuSiO)2(SiMe2)] (2). The structure of 2 has been inferred from multinuclear NMR and infrared spectroscopy. The hybrid "closed-structure" anion 2 consists of the (gamma-PW10O36) framework on which is grafted a heterosilylated network composed of a capping fragment, Si(CH3)2, linked to the t-BuSi groups through two siloxane bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号