共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameterζ∝λ0 +λ1(1+z)n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset
(the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known $\Lambda$CDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r,s} as axes where the fixed point represents theΛCDM model. The possible singularity property in this bulk viscosity
cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous
increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling. 相似文献
2.
The universe content is considered as a non-perfect fluid with bulk viscosity and can be described by a general equation of state (endowed some deviation from the conventionally assumed cosmic perfect fluid model). An explicitly bulk viscosity dark energy model is proposed to confront consistently with the current observationaldata sets by statistical analysis and is shown consistent with (not deviated away much from) the concordant Λ Cold Dark Matter (CDM) model by comparing the decelerating parameter. Also we compare our relatively simple viscosity dark energy model with a more complicated one by contrast with the concordant ΛCDM modeland find our model improves for the viscosity dark energy model building. Finally we discuss the perspectives of dark energy probes for the coming years with observations. 相似文献
3.
The universe content is considered as a non-perfect fluid with bulk viscosity and can be described by a general equation of state (endowed some deviation from the conventionally assumed cosmic perfect fluid model). An explicitly bulk viscosity dark energy model is proposed to confront consistently with the current observational data sets by statistical analysis and is shown consistent with (not deviated away much from) the concordant A Cold Dark Matter (CDM) model by comparing the decelerating parameter. Also we compare our relatively simple viscosity dark energy model with a more complicated one by contrast with the concordant ACDM model and find our model improves for the viscosity dark energy model building. Finally we discuss the perspectives of dark energy probes for the coming years with observations. 相似文献
4.
The universe content is considered as a non-perfect fluid with bulk viscosity and is described by a more general equation of state (endowed some deviation from the conventionally assuned cosmic perfect fluid model).We assume the bulk viscosity is a linear combination of two termsone is constant,and the other is proportional to the scalar expansion θ = 3a/a.The equation of state is described as p = (γ - 1)p p0,where p0 is a parameter.In this framework we demonstrate that this model can be used to explain the dark energy dominated universe,and different proper choices of the parameters may lead to three kinds of fates of the cosmological evolutionno future singularity,big rip,or Type-Ⅲ singularity as presented in [S.Nojiri,S.D.Odintsov,and S.Tsujikawa,Phys.Rev.D 71 (2005) 063004]. 相似文献
5.
CAI Rong-Gen HU Bin ZHANG Yi 《理论物理通讯》2009,51(5):954-960
The constraint on the total energy in a given spatial region is given from holography by the mass of a black hole that just fits in that region, which leads to an UV/IR relation: the maximal energy density in that region is proportional to Mp^2/L^2, where Mp is the Planck mass and L is the spatial scale of that region under consideration. Assuming the maximal black hole in the universe is formed through gravitational collapse of perturbations in the universe, then the "Jeans" scale of the perturbations gives a causal connection scale RCC. For gravitational perturbations, RCC^-2= Max (H+ 2H^2, -H) for a fiat universe. We study the cosmological dynamics of the corresponding vacuum energy density by choosing the causal connection scale as the IR cutoff in the UV/IR relation, in the cases of the vacuum energy density as an independently conserved energy component and an effective dynamical cosmological constant, respectively. It turns out that only the case with the choice RCC^-2 = H+ 2H^2, could be consistent with the current cosmological observations when the vacuum density appears as an independently conserved energy component. In this case, the model is called holographic Ricci scalar dark energy model in the literature. 相似文献
6.
7.
8.
9.
10.
从热力学角度研究了暗能量和暗物质之间的相互作用. 假设相互作用是平衡态上的涨落并考虑此涨落导致的熵的修正, 导出了相互作用的物理表述, 把我们模型和观测结果作了比较. 相似文献
11.
宇宙暗物质和暗能量是21世纪粒子物理和宇宙学研究中的两个重大的科学问题.文章首先简述了宇宙学研究的历史和现状以及对粒子物理学提出的新的挑战,接着较详细地介绍了暗物质、暗能量和反物质相关的科学问题以及在国际上这个研究领域近年来所取得的进展,最后展望了中国在暗物质和暗能量实验探测研究方面的前景. 相似文献
12.
13.
宇宙暗物质和暗能量是21世纪粒子物理和宇宙学研究中的两个重大的科学问题.文章首先简述了宇宙学研究的历史和现状以及对粒子物理学提出的新的挑战,接着较详细地介绍了暗物质、暗能量和反物质相关的科学问题以及在国际上这个研究领域近年来所取得的进展,最后展望了中国在暗物质和暗能量实验探测研究方面的前景. 相似文献
14.
Many astrophysics data show that our universe has a critical energy density, and 73% of it is dark energy, which drives the
accelerating expansion of the universe. We consider the holographic dark energy in induced gravity by taking the Hubble scale,
particle horizon and event horizon as the infrared cutoff. We find that only the event horizon can give accelerating expansion
of our universe. 相似文献
15.
A two-dimensional Brans-Dicke star model with exotic matter and dark energy is studied in this paper, the field equation and balance equation are derived at finite temperature, the analytic solutions of these equations can be used to calculate the mass of star. In addition, we find that star's mass has a minimum when matter state parameter γ→0. 相似文献
16.
暗物质是宇宙的主要物质成分,但其本质是什么仍然是现代科学亟待解决的一个重大问题。粒子物理学提供了多种暗物质粒子的候选者,不同的暗物质模型在宇宙小尺度结构方面有迥然不同的预言,所以原则上人们可以通过天文观测来限制暗物质粒子的属性。文章首先综述了暗物质粒子属性对宇宙结构形成的影响,然后阐述目前流行的冷暗物质宇宙学模型面临的一些困难,最后讨论用天文学区分冷、温暗物质模型的天文学方面研究进展情况。 相似文献
17.
HUANG Wu-Liang HUANG Xiao-Dong 《理论物理通讯》2009,51(3):575-576
Since there may exist dark matter particles ν and δ with mass - 10^-1 e V in the universe, the superstructures with a scale of 10^19 solar masses (large number A - 10^19) appeared during the era near and before the hydrogen recombination. Since there are superstructures in the universe, there may be no necessity for the existence of dark energy. For checking the superstructure in the universe by CMB anisotropy, we need to measure CMB angular power spectrum especially around ten degrees across the sky- in more details, While neutrino u is related to electroweak unification, the fourth stable elementary particle 6 may be related to strong-gravity unification, which suggests p + p^- → n + δ^- and that some new baryons appeared in the TeV region. 相似文献
18.
A two-dimensional Brans-Dicke star model with exotic matter and darkenergy is studied in this paper, the field equation and balance equation arederived at finite temperature, the analytic solutions of these equations canbe used to calculate the mass of star. In addition, we find that star's masshas a minimum when matter state parameter γ→0. 相似文献
19.
A new relation for the density parameter Ω is derived as a function of expansion velocity υ based on Carmeli's cosmology.
This density function is used in the luminosity distance relation D
L. A heretofore neglected source luminosity correction factor (1 − (υ/c)2)−1/2 is now included in D
L. These relations are used to fit type Ia supernovae (SNe Ia) data, giving consistent, well-behaved fits over a broad range
of redshift 0.1 < z < 2. The best fit to the data for the local density parameter is Ωm = 0.0401 ± 0.0199. Because Ωm is within the baryonic budget there is no need for any dark matter to account for the SNe Ia redshift luminosity data. From
this local density it is determined that the redshift where the universe expansion transitions from deceleration to acceleration
is z
t = 1.095+0.264
−0.155. Because the fitted data covers the range of the predicted transition redshift z
t, there is no need for any dark energy to account for the expansion rate transition. We conclude that the expansion is now
accelerating and that the transition from a closed to an open universe occurred about 8.54 Gyr ago. 相似文献
20.
A so-called ghost dark energy was recently proposed to explain the present acceleration of the universe.The energy density of ghost dark energy,which originates from Veneziano ghost of Quantum Chromodynamics(QCD),in a time dependent background,can be written in the form,ρD=αH + βH~2 where H is the Hubble parameter.We investigate the generalized ghost dark energy(GGDE) model in the setup of loop quantum Cosmology(LQC) and Galileon Cosmology.We study the cosmological implications of the models.We also obtain the equation of state and the deceleration parameters and differential equations governing the evolution of this dark energy model for LQC and Galileon Cosmology. 相似文献