首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Structural, elastic and electronic properties of tetragonal HfO2 at applied hydrostatic pressure up to 50 GPa have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The calculated ground-state properties are in good agreement with previous theoretical and experimental data. Six independent elastic constants of tetragonal HfO2 have been calculated at zero pressure and high pressure. From the obtained elastic constants, the bulk, shear and Young's modulus, Poisson's coefficients, acoustic velocity and Debye temperature have been calculated at the applied pressure. Band structure shows that tetragonal HfO2 is an indirect band gap. The variation of the gap versus pressure is well fitted to a quadratic function.  相似文献   

2.
First-principles study of structural, elastic, and electronic properties of the B20 structure OsSi has been reported using the plane-wave pseudopotential density functional theory method. The calculated equilibrium lattice and elastic constants are in good agreement with the experimented data and other theoretical results. The dependence of the elastic constants, the aggregate elastic modulus, the deviation from the Cauchy relation, the elastic wave velocities in different directions and the elastic anisotropy on pressure have been obtained and discussed. This could be the first quantitative theoretical prediction of the elastic properties under high pressure of OsSi compound. Moreover, the electronic structure calculations show that OsSi is a degenerate semiconductor with the gap value of 0.68 eV, which is higher than the experimental value of 0.26 eV. The analysis of the PDOS reveals that hybridization between Os d and Sip states indicates a certain covalency of the Os-Si bonds.  相似文献   

3.
The lattice parameters, bulk modulus, phase transition pressure, and temperature dependencies of the elastic constants cij of CdSe are investigated by using the Cambridge Serial Total Energy Package (CASTEP) program in the frame of Density Functional Theory (DFT). It is found that the phase transitions from the ZB structure to the RS structure and from WZ structure to RS structure are 2.2 GPa and 2.8 GPa, respectively. Our results agree well with the available experimental data and other theoretical results. The aggregate elastic modulus (B, G, E, A ), the Poisson's ratio (v), the Griuneisen parameter (γ), the Debye temperature θD on pressure and temperature are also successfully obtained.  相似文献   

4.
Electronic and optical properties of rock-salt AIN under high pressure are investigated by first -principles method based on the plane-wave basis set. Analysis of band structures suggests that the rock-salt AIN has an indirect gap of 4.53 eV, which is in good agreement with other results. By investigating the effects of pressure on the energy gap, the different movement of conduction band at X point below and above 22.5 GPa is predicted. The optical properties including dielectric function, absorption, reflectivity, and refractive index are also calculated and analyzed. It is found that the rock-salt AIN is transparent from the partially ultra-violet to the visible light area and hardly does the transparence affected by the pressure. Furthermore, the curve of optical spectrum will shift to high energy area (blue shift) with increasing pressure.  相似文献   

5.
First-principles calculations of structural, electronic, optical, elastic, mechanical properties, and Born effective charges of monoclinic HfO2 are performed with the plane-wave pseudopotential technique based on the density-functional theory. The calculated structural properties are consistent with the previous theoretical and experimental results. The electronic structure reveals that monoclinic HfO2 has an indirect band gap. The analyses of density of states and Mulliken charges show mainly covalent nature in Hf-O bonds. Optical properties, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function, and optical conductivity each as a function of photon energy are calculated and show an optical anisotropy. Moreover, the independent elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, compressibility, Lam6 constant, sound velocity, Debye temperature, and Born effective charges of monoclinic HfO2 are obtained, which may help to understand monoclinic HfO2 for future work.  相似文献   

6.
Structural parameters, elastic, mechanical, electronic, chemical bonding, and optical properties of tetragonal HfSiO4 have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory. The ground-state properties obtained by minimizing the total energy are in agreement with the available experimental and theoretical data. This compound is found to be mechanically stable, and we have obtained the bulk, shear, and Young's modulus; Poisson's coefficient; and Lamé's constants. We have estimated the Debye temperature of tetragonal HfSiO4 from the acoustic velocity. Electronic and chemical bonding properties have been studied. Moreover, the complex dielectric function, refractive index, extinction coefficient, absorption coefficient, energy-loss spectrum, optical reflectivity, and complex conductivity function are calculated and analyzed.  相似文献   

7.
The electronic structure and the magnetic properties of the non-pure organic ferromagnetic compound MnCu(pbaOH)(H2O)3 with pbaOH = 2-hydroxy-1, 3-propylenebis (oxamato) are studied by using the density-functional theory with local-spin-density approximation. The density of states, total energy, and the spin magnetic moment are calculated. The calculations reveal that the compound MnCu(pbaOH)(H20)3 has a stable metal-ferromagnetic ground state, and the spin magnetic moment per molecule is 2.208 μB, and the spin magnetic moment is mainly from Mn ion and Cu ion. An antiferromagnetic order is expected and the antiferromagnetic exchange interaction of d-electrons of Cu and Mn passes through the antiferromagnetic interaction between the adjacent C, O, and N atoms along the path linking the atoms Cu and Mn.  相似文献   

8.
ZnO电子结构与光学性质的第一性原理计算   总被引:1,自引:0,他引:1  
计算了ZnO电子结构和光学线性响应函数,从理论上给出了ZnO材料电子结构与光学性质的关系。所有计算都是基于密度泛函理论框架下的第一性原理平面波超软赝势方法。利用精确计算的能带结构和态密度分析了带间跃迁占主导地位的ZnO材料的介电函数、反射谱、反射率以及消光率,理论结果与实验符合甚佳,为ZnO光电材料的设计与应用提供了理论依据。同时,计算结果也为精确监测和控制ZnO材料的生长过程提供了可能性。  相似文献   

9.
立方晶相HfO2电子结构与光学性质的第一性原理计算   总被引:1,自引:1,他引:1  
冯丽萍  刘正堂  许冰 《光学学报》2008,28(11):2191-2194
利用密度泛函理论框架下的第一性原理平面波超软赝势方法计算了立方晶相二氧化铪(c-HfO2)的电子结构,得到了c-HfO2的总念密度、分波态密度和能带结构.经带隙校正后,计算了c-HfO2的光学线性响应函数随光子能最的变化关系,包括复介电函数,反射率、复折射率以及光学吸收系数,并从理论上给出了c-HfO2材料光学性 质与电子结构的关系.经比较发现,对c-HfO2的电子结构和光学性质的计算结果与已有的实验数据和其它理论研究吻合得较好,从而为c-HfO2光电材料的设计与应用提供了理论依据.同时,计算结果也表明采用密度泛函理论的广义梯度近似来计算和预测c-HfO2材料的电子结构和光学性质是比较可靠的.  相似文献   

10.
We studied the electronic structure of the two new transition-metal carbodiimides CoNCN and NiNCN using first-principles method, which is based on density-functional theory (DFT). The density of states (DOS), the total energy of the cell and the spin magnetic moment of CoNCN and NiNCN were calculated. The calculations reveal that the compound CoNCN and NiNCN have hall-metallic properties in ferromagnetic ground state, and the spin magnetic moment per molecule is about 7.000 μB and 6.000 μB for CoNCN and NiNCN, respectively.  相似文献   

11.
12.
In this paper, we study the electronic band structure and the ferromagnetic properties of the organic radicalp-NPNN by employing density-functional theory with generalized gradient approximation (GGA) and local-spin densityapproximation (LSDA). The density of states, the total energy, and the spin magnetic moment are calculated. Thecalculations reveal that the δ-phase of p-NPNN has a stable ferromagnetic ground state. It is found that an unpairedelectron in this compound is localized in a single occupied molecular orbital (SOMO) constituted primarily of π* (NO)orbitals, and the main contribution of the spin magnetic moment comes from the π* (NO) orbitals. By comparison, wefind that the GGA is more suitable to describe free radical systems than LSDA.  相似文献   

13.
Lithium superoxides,Li2O3,LiO2,and LiO4,have been synthesized under high pressure.These materials have potential applications in energy storage devices.Here,we ...  相似文献   

14.
CdS掺Mg和Ni电子结构和光学性质的密度泛函理论研究   总被引:2,自引:4,他引:2  
熊志华  饶建平  江风益 《光学学报》2007,27(12):2225-2228
采用基于密度泛函理论的第一性原理赝势平面波方法,对闪锌矿结构CdS和CdS∶M(M=Mg,Ni)几何结构、能带结构、电子态密度和光学性质进行了系统的研究。几何结构研究对掺杂后体系晶格常量进行了优化计算,结果表明Mg和Ni原子掺入CdS后晶格常量均减小,晶格发生局部畸变。进一步研究了掺杂对体系电子结构的影响,能带结构和电子态密度分析表明由于Ni 3d电子的引入使CdS∶Ni成为半金属铁磁半导体,而Mg 3s电子的引入CdS∶Mg带隙变宽。另外,体系掺杂后,吸收系数分析表明掺杂导致吸收峰在可见光波长区域变化显著,且掺Ni导致吸收峰进一步向长波方向移动。  相似文献   

15.
First principles calculations of structural, electronic, elastic, and phonon properties of the intermetallic compounds FeSi and CoSi in the B2 (CsCl) structure are presented, using the pseudopotential plane-wave approach based on density functional theory, within the local density approximation. The optimized lattice constants, independent elastic constants, bulk modulus, and first-order pressure derivative of the bulk modulus are reported for the B2 structure and compared with earlier experimental and theoretical calculations. A linear-response approach to density functional theory is used to derive the phonon dispersion curves, and the vibrational partial and total density of states. Atomic displacement patterns for FeSi at the Γ, X, and R symmetry points are presented. The calculated zone-center optical phonon mode for FeSi is in good agreement with experimental and theoretical data.  相似文献   

16.
冯庆  王寅  王渭华  岳远霞 《计算物理》2012,29(4):593-600
采用基于第一性原理的平面波超软赝势方法研究N和S单掺杂以及N和S共掺杂金红石相TiO2的能带结构,态密度和光学性质.结果表明:N掺杂导致禁带宽度减小为1.43 eV,并且在价带上方形成了一条杂质能带;S掺杂导致费米能级上移靠近导带,直接带隙减小为0.32 eV;N和S共掺杂导致能带结构中出现了两条杂质能带,靠近导带的一条杂质能级距离导带底约0.35 eV,靠近价带的一条杂质能级距离价带顶约0.85 eV,杂质能级主要由N原子的2p轨道和S原子的3p轨道组成.N和S掺杂后不但使TiO2的吸收带产生红移,而且在可见光区具有较大的吸收系数,光催化活性增强.  相似文献   

17.
The structural, elastic, electronic and optical properties of the platinum-based superconductor SrPt3P under pressure are investigated by the generalized gradient approximation with the Perdew–Burke–Ernzerhof exchange-correlation functional in the framework of density-functional theory. The calculated structural parameters (a, c) and the primitive cell volume V of SrPt3P at the ground state are in good agreement with the available experimental data and seem to be better than other calculated results. The pressure dependences of the elastic constants \mathop C\nolimits_{ij}, bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio σ of SrPt3P are also obtained successfully. The computed elastic constants indicate that SrPt3P is mechanically stable up to 100 GPa. The obtained B/G is 2.56 at the ground state, indicating that SrPt3P behaves in a ductile manner. The ratio B/G also increases with growing pressures, indicating that the structure becomes more and more ductile. Even though SrPt3P is an ionic-covalent crystal, the obtained density of states shows that it has metallic characteristic. These conclusions can be further demonstrated by analysing the charge and Mulliken population. In addition, we have investigated the dielectric function and the loss function. It is found that the dielectric function in (E||x, E||y) is isotropic, whereas the directions (E||x, E||z) are anisotropic; the effect of pressure on the loss function of the deep ultraviolet region gradually increases as the pressure increases.  相似文献   

18.
Using First-principle calculations, we have studied the structural, electronic and elastic properties of M2TlC, with M = Ti, Zr and Hf. Geometrical optimization of the unit cell is in good agreement with the available experimental data. The effect of high pressures, up to 20 GPa, on the lattice constants shows that the contractions are higher along the c-axis than along the a axis. We have observed a quadratic dependence of the lattice parameters versus the applied pressure. The band structures show that all three materials are electrical conductors. The analysis of the site and momentum projected densities shows that bonding is due to M d-C p and M d-Tl p hybridizations. The M d-C p bonds are lower in energy and stiffer than M d-Tl p bonds. The elastic constants are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus and Poisson’s ratio for ideal polycrystalline M2TlC aggregates. We estimated the Debye temperature of M2TlC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Ti2TlC, Zr2TlC, and Hf2TlC compounds that requires experimental confirmation.   相似文献   

19.
The structural, elastic and electronic properties of BaZnO2 under pressure are investigated by the plane wave pseudopotential density functional theory (DFT). The calculated lattice parameters and unit cell volume of BaZnO2 at the ground state are in good agreement with the available experimental data and other theoretical data. The pressure dependences of elastic constants Cij, bulk modulus B, shear modulus G, B/G, Poisson’ s ratio σ, Debye temperature Θ and aggregate acoustic velocities VP and VS are systematically investigated. It is shown that BaZnO2 maintains ductile properties under the applied pressures. Analysis for the calculated elastic constants has been made to reveal the mechanical stability and mechanical anisotropy of BaZnO2. At the ground state, the calculated compressional and shear wave velocities are 8.26 km/s and 1.81 km/s, respectively, and the Debye temperature Θ is 240.8 K. The pressure dependences of the density of states and the bonding property of BaZnO2 are also investigated.  相似文献   

20.
The structural stability and elastic properties of wurtzite thallium nitride (TIN) under hydrostatic pressure are studied for the first time by first-principles calculations. The enthalpy calculations predict that TIN undergoes a phase transition from the wurtzite structure to the rocksalt structure at 19.2 GPa with a volume collapse of 13.0%. Our calculated results also show that this nitride is ductile in nature and exhibits high elastic anisotropy. Our ground-state results are in good agreement with the data of other theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号