首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurement of concentration of radon and thoron daughter products in various indoor environment covering four seasons of a year in Udagamandalam Taluk of Nilgiris biosphere has been carried out using a high volume air sampler to asses the inhalation dose to the population which delivers higher dose than the radon and thoron gas alone. The potential alpha-energy concentrations of the radon and thoron progeny ranged from 0.97 to 12.72 mWL and from 1.63 to 15.83 mWL with a geometric mean of 6.02 and 7.89 mWL, respectively, taking all seasons into account. These measurements have yielded a wealth of data on the variation among the indoor radon and thoron progeny in various places during different seasons. The radon and thoron progeny levels are higher in winter seasons and are less in summer season with autumn and spring data lie in between winter and summer. Using the dose conversion factor for indoor exposures given in UNSCEAR 93 report the internal equivalent dose to the inhalation of radon progeny is evaluated to be 1357 mSv.y–1 and the corresponding annual effective dose equivalent value has been found to be 2.13 mSv.y–1. It can be observed that the mean value of radon is higher than the Indian average. Also it is found the radon and thoron progeny levels are higher in the case of houses built with rock and granite and in tiled type houses of nearly 100 years old. The levels are less in the case of houses built with brick and cement. The observed results for different types of houses and seasons are discussed in this paper.  相似文献   

2.
Radon and thoron concentration in the outdoor environment are affected by the magnitude of the exhalation rate that can vary diurnally and seasonally. This paper presents measurement results of radon and thoron exhalation rates and gamma-ray dose rate in different season at same location points in Gunma Prefecture Japan. Exhalation rates were measured by the MSZ instrument which is based on the accumulation method. Three measurement points Katashina Village, Midori City and Takasaki City were selected for measurement. Soil water saturation and soil temperature were measured to investigate their relationship with exhalation rate. The diurnal variation of exhalation rate may be correlated with soil temperature but no clear relationship was found between them. The gamma-ray dose rate do not vary significantly at the same places even in different season. The average radon exhalation rates were 11 ± 2, 2 ± 1, 5 ± 3 and 11 ± 4 mBq m−2 s−1 for spring, summer, autumn and winter, respectively. Those for thoron were 1,100 ± 100, 120 ± 30, 250 ± 80 and 860 ± 140 mBq m−2 s−1. Thus there was a variation of radon and thoron exhalation rate with different seasons. The radon and thoron exhalation rates in the summer and autumn surveys are higher than those in the spring and winter surveys which were affected by rainfall. It indicates that water saturation is an influential factor for radon and thoron exhalation rates.  相似文献   

3.
Inhalation of radon, thoron and their decay products can cause a significant health hazard when present in enhanced levels in the indoor environment like a human dwelling. In the present work a set of indoor radon and thoron measurements was carried out using time-integrated passive twin cup dosimeters containing LR-115 Type II solid state nuclear track detectors in different houses of Khurja City in Bulandshahar district of U.P. in India, built of the same type of building materials. The radon gas concentration was found to vary from 9.18 to 23.19 Bq m?3 with an average value of 16.02 Bq m?3 (SD = 3.68) and the thoron gas concentration varied from 2.78 to 9.03 Bq m?3 with an average value of 5.36 Bq m?3 (SD = 1.58). The radon progeny concentration ranged from 0.99 to 2.51 mWL with an average value of 1.77 mWL (SD = 0.40) and the concentration of thoron progeny was found to vary from 0.30 to 0.98 mWL with an average value of 0.58 mWL (SD = 0.17). The annual effective dose varied from 0.27 to 0.67 mSv year?1 with an average value of 0.47 mSv year?1(SD = 0.10).  相似文献   

4.

In order to map the thoron prone areas of the coastal region of Kollam district, a well known HBRA of south India, comparative study of radon and thoron exhalation rate was conducted. The in situ measurement of radon and thoron exhalation has been taken. These studies were correlated with the gamma radiation level. The average value of thoron exhalation is found to 5.55 ± 1.35 Bq m−2 s−1 along the coastal areas and the radon exhalation rate is found to 107.6 ± 32 Bq m−2 h−1. The value of thoron exhalation was found 12 times greater than the global values in Neendakara and Chavara region and about 6 times greater in the Alappad region.

  相似文献   

5.
Summary Aone year survey of indoor radon and thoron concentrations was carried out in offices and dwellings of the Gunma prefecture, Japan. A passive integrating radon and thoron discriminative monitor was used in the survey. The annual mean radon concentration was 22±14 Bq . m-3, and ranged from 12 to 93 Bq . m-3 among the 56 surveyed rooms. Radon concentration in offices was generally higher than that in the dwellings, with the arithmetic averages of 29 and 17 Bq . m-3, respectively. Radon concentrations were generally lower in the traditional Japanese wooden houses than those houses built with other building materials. Seasonal variation of indoor radon was also observed in this survey. Compared to summer and autumn, radon concentrations were generally higher in spring and winter. The mean value of thoron to radon ratio was estimated to be 1.3, higher values were observed in the dwellings than in the offices. The annual effective dose from the exposure to indoor radon was estimated to be 0.47 mSv after taking the occupancy factors of offices and dwellings into account.  相似文献   

6.
The activity concentration and absorbed gamma dose rates due to primordial radionuclides (238U, 232Th and 40K) have been determined for the soil of Coimbatore city using NaI(Tl) gamma-ray spectrometer. The average activity concentrations of 232Th, 238U and 40K in the soil samples have been found to be 31.4 Bq·kg−1, 12.8 Bq·kg−1 and 698.0 Bq·kg−1, respectively, which give the total gamma dose rate contribution of 56.4 nGy·h−1. Grab sampling technique has been used to determine the indoor radon (222Rn) and thoron (220Rn) progeny levels in different dwellings in the city. The concentrations of radon and thoron progenies range from 0.4 to 10.4 and from 0.7 to 12.7 mWL with a mean value of 1.4 mWL and 3.1 mWL, respectively. The annual effective dose due to radon and thoron progeny has been found to be 0.14 mSv·y−1.  相似文献   

7.
The present work deals with the assessment of annual inhalation dose due to exposure of indoor radon, thoron and their progeny concentrations in the villages situated in sub-mountainous region of Jammu & Kashmir, India. The distribution of the data and the homogeneity of medians among different seasons and dwellings were assessed with the Shapiro–Wilk test and the Mann–Whitney test. The estimated total annual inhalation dose in these villages varied from 0.5 to 1.9 mSv year?1 which is less than the prescribed limit by ICRP (2008). Thus, the investigated area is safe from irradiation of radon, thoron and their progeny.  相似文献   

8.
The temporal variation of the radon concentration, and the radon and thoron concentrations every 3 months for a year were measured using two types of devices in a landmark skyscraper, the Tokyo Metropolitan Government Daiichi Building. In the measurement of temporal variation of the radon concentration using a pulse type ionization chamber, the average radon concentration was 21 ± 13 Bq m?3 (2–68 Bq m?3). The measured indoor radon concentration had a strong relationship with the operation of the mechanical ventilation system and the activities of the office workers. The radon concentration also increased together with temperature. Other environmental parameters, such as air pressure and relative humidity, were not related to the radon concentration. In the long-term measurements using a passive radon and thoron discriminative monitor, no seasonal variation was observed. The annual average concentrations of radon and thoron were 16 ± 8 and 16 ± 7 Bq m?3, respectively. There was also no relationship between the two concentrations. The annual average effective dose for office workers in this skyscraper was estimated to be 0.08 mSv y?1 for 2000 working hours per year. When considering the indoor radon exposure received from their residential dwellings using the annual mean radon concentration indoors in Japan (15.5 Bq m?3), the annual average effective dose was estimated to be 0.37 mSv y?1. This value was 31 % of the worldwide average annual effective dose.  相似文献   

9.
Measurements of radon,thoron and their progeny in Gifu prefecture,Japan   总被引:1,自引:0,他引:1  
Summary Due to the rocky neighborhood, consisting of mostly granite with high radium content, an elevated radon concentration was found in a territory of Gifu prefecture situated in the middle of Japan. Radon concentrations in water were measured and were found to be considerably high. Since indoor radon and radon progeny concentrations might be relatively high, their concentrations were also analyzed. Besides the radon and radon progeny, thoron and thoron progeny concentrations were also investigated. Dose estimations for radon and thoron in indoor air are discussed.  相似文献   

10.
A new Monte Carlo computer code was developed for determining the detection efficiencies of the CR-39 and LR-115 II solid state nuclear track detectors (SSNTD) for a-particles emitted by radon (222Rn) and thoron (220Rn) series inside the atmosphere of dwelling rooms. Alpha-activities due to radon, thoron and their decay products, were evaluated for the determination of the detection efficiencies of the SSNTD utilized for the emitted a-particles by measuring the corresponding track densities. The influence of the ventilation rate and building material on the concentration of radon, thoron and their progenies was investigated. Equilibrium factors between radon and its progeny and between thoron and its daughters have been evaluated in the air of the rooms.  相似文献   

11.
This paper presents a method for measuring indoor radon concentrations using a commercially available air-purifying respirator filter as a component of the radon monitor. The filter used was Survivair’s NIOSH (National Institute for Occupational Health and Safety)-approved 100800 model. The method is based on the diffusion of radon gas into the activated carbon of the filter and the measurement of the radioactive daughters resulting from the radon decay. The photopeaks of the 214Bi daughter gamma rays (0.609 MeV) were analyzed with a Hyper-Pure Germanium (HPGe) detector and a multichannel system. A monotonically increasing and very close to linear response relation between the integrated area under the 214Bi photopeak and the radon concentration of the activated carbon was found. A well-defined relation held for radon levels ranging from 15 to 4,700 Bq/m3. This procedure results in highly reproducible and reliable measurements of indoor radon levels. Interesting applications include the investigation of radiological accidents involving radon and the retrospective measuring of indoor radon concentrations by analyzing the filters of the respirators worn by personnel working during the relevant period.  相似文献   

12.
Radon and its progenies in indoor environment have been identified as the main sources of radiation dose to the people from natural radioactive sources. Presence of radon in drinking water causes radiation related health hazards both through inhalation and ingestion. In this study 36 drinking water samples from taps, boreholes and deep tube wells within the Main Campus of the University of Peshawar and adjoining area were analyzed with RAD7 electronic device for radon content determination. These water samples have a mean, maximum and minimum radon value of 8.8 ± 0.8, 18.2 ± 1.0, and 1.6 ± 0.3 Bq L−1, respectively. Eleven drinking water samples analyzed have radon levels in excess of the EPA recommended maximum contaminant level (MCL) of 11.1 Bq L−1. These include 89% from tube wells, 8% from tap water, and 50% from shallow boreholes. Radon levels of about 31% of the total samples used by the inhabitants of the study area are higher than the EPA advised level of 11.1 Bq L−1. The annual effective dose from radon in water due to its ingestion and inhalation per individual has also been estimated. The mean radon concentration and mean annual effective dose due to radon in water of this study have been compared with the mean radon concentration and mean annual effective dose of earlier investigators due to radon in water from different localities of India and Pakistan. The mean annual effective doses of all the samples are lower than the reference level of 0.1 mSv a−1 for drinking water of WHO and EU Council. It has been concluded that drinking water of the study area is generally safe as far as radon related health hazards are concerned with the exception of a few isolated cases. It has been found that radon levels within the region have a positive correlation with depth of the water sources.  相似文献   

13.
The radiation dose due to inhalation of radon, thoron and their progenies constitute a major part (50 %) of the total natural background dose received by a man. Thus measurement of indoor radon in dwellings is very important. In the present study, radon, thoron and their decay product measurements were carried out using passive detector systems, namely the pinholes dosimeters and Direct Radon (Thoron) progeny sensors. These measurements were carried out in indoor environments (different dwelling types) during January–April 2013 for 90 days, in the Gogi region. The time-averaged mean radon, thoron and decay product concentrations were found to be within the permissible UNSCEAR limits.  相似文献   

14.
A new portable type cascade impactor has been developed to determine the activity size distribution of radon and thoron progeny in a natural environment more efficiently. The modified impactor consists of 4 stages with a back up filter stage for the collection of aerosol samples. The aerosol cut points in the impactor are set for 10, 2.5, 1 and 0.5 μm at a flow rate of 4 L min?1. Five CR-39 chips were used as alpha detectors for each stage. In order to separate α particles emitted from radon and thoron progeny, CR-39 detectors are covered with aluminum-vaporized Mylar films. The thickness of each film is adjusted to allow α particles emitted from radon and thoron progeny to reach the CR-39 detectors. The technique has been successfully tested in field studies, particularly inside a mineral treatment industry in Thailand to estimate doses in the working environment. The dose calculations by lung dose evaluation program showed that activity median aerodynamic diameters played a significant role in determining the particle size distributions of the attached radon and thoron progeny. The dose conversion factor determined from short term measurements due to exposure from the inhalation of thoron and its progeny was found to be 4 times higher than comparable values for radon and its progeny. The effective dose for workers exposed to radon is about 4–6 times higher than thoron.  相似文献   

15.
Alpha- and beta-activities per unit volume of air due to radon (222Rn), thoron (220Rn) and their progenies were measured in the air of natural caves and ancient mines as well as inside different reference atmospheres by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs). In addition, the radon concentration was continuously measured inside one of the studied caves by using the SSNTDs’ method and AlphaGuard counter. Equilibrium factors between radon and its daughters and between thoron and its progeny were evaluated in the studied atmospheres. Alpha-activities due to 218Po and 214Po short-lived radon decay products were determined in different compartments of the respiratory tract of members of the public. The committed equivalent doses due to the 218Po and 214Po radon short-lived progeny were evaluated in different tissues of the respiratory tract of the visitors of the considered caves and ancient mines. Annual effective doses due to radon progeny from the inhalation of air by the visitors of the studied caves and ancient mines were evaluated.  相似文献   

16.
Twin cup pin-hole dosimeters having LR-115 as the detector were used to measure the concentration of radon and thoron in the dwellings of Firozabad city of Uttar Pradesh State in India. The mean values of radon, thoron, radon progeny and thoron progeny concentrations were found to be 37.4 Bqm?3, 13.7 Bqm?3, 4.0 and 1.5 mWL respectively. The average value of annual effective dose equivalent to the inhabitants of Firozabad city was found to be 1.1 mSv and is below the action level as recommended by the ICRP.  相似文献   

17.
Nowadays, artificial “radon spa sources” for home baths are commercially available. Although these sources could give a potential radiation exposure to the users, few studies have been reported on their radiological measurements. In the present study, five types of radon spa sources were collected and their radiological characterization was investigated. The followings were estimated for these samples: (1) radon emanation coefficients (dry and water-saturated conditions), (2) surface γ-ray dose rate, (3) surface count rates for α- and β-rays, (4) activity concentrations of 226Ra, 232Th and 40K, and (5) concentrations of radon and thoron generated from the sources located in an air flow system. The activity concentrations were very high (except for one sample (named “sample B”), although radon emanation coefficient was low compared with soil. This leads to high concentrations of radon/thoron generated from the sample. The maximum surface γ-ray dose rate was observed for sample A (2.7 μGy h−1). If people stay very close to the sample for a long time, the exposure might be significant.  相似文献   

18.

Radon, thoron and their progeny are responsible for more than 50% of the total ionizing radiation dose received by human population. In the present work, radon, thoron and their progeny concentration measurements have been carried out in 150 dwellings in different villages of Faridabad district of Haryana, India. Pin-holes based twin cup dosimeter containing LR-115 type-II film (solid state nuclear track detectors) has been used for the time-integrated passive measurement of radon and thoron concentrations. The dosimeters were deployed for three seasons each having 4 months of exposure period. For measurement of radon and thoron progeny concentration (EERC/EETC), deposition based direct radon/thoron progeny sensors (DRPS/DTPS) were deployed with dosimeters. Based on the gamma exposure rate in different villages during preliminary survey and type of houses available in the regions, numbers of dwellings of different categories have been selected. Radon, thoron and their progeny concentration and total annual effective inhalation dose were calculated and compared with the recommended limits by UNSCEAR, ICRP and WHO.

  相似文献   

19.
Operation of negative ion generators in three rooms of an occupied residence caused decreases in indoor concentrations of the radon decay products218Po,214Pb and214Bi, and of the thoron progeny212Pb. Activity levels of212Pb were lowered more than those of214Pb, resulting in a decrease in the potential alpha energy concentration ratio, PAEC(Tn:Rn). The change in PAEC(Tn:Rn) is a function of the halflives of214Pb and212Pb and their respective precursors and is similar to the effect brought about by increased room ventilation. Decay products are also removed from indoor air by plateout of charged particles on room walls. Plateout rates calculated for214Pb suggest that even in well-ventilated houses, the potential alpha energy concentration of radon is affected as much by wall plateout as by infiltration of outside air.  相似文献   

20.
Indoor radon and thoron concentrations were dominated with their exhalation rate from building materials. Thus, the evaluation of exhalation rate with highly precise is important. This paper presented a new technique to measure the dependence radon/thoron exhalation rate, from building materials used in Japan, on absolute humidity. The measurement technique consisted of a solid state alpha detector equipped a ventilation-type chamber and humidity control system in a flow through method. The exhalation rate of dried samples (Indian red granite and Japanese gray granite) was measured at various absolute humidity levels in the range of 1–20 g cm−3. It was found that exhalation rate increased exponential with increasing of absolute humidity for both samples. Furthermore, the dependence of radon emanation coefficient on building material’s temperature was also studied using an accumulation chamber equipped with scintillation cell alpha detector. The emanation coefficient of dry sample increased proportionally with increasing the material’s temperature with a correlation factor of 0.88.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号