首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Electronic relaxation, the change in molecular electronic structure as a response to oxidation, is investigated in [FeX(4)](2)(-)(,1)(-) (X = Cl, SR) model complexes. Photoelectron spectroscopy, in conjunction with density functional methods, is used to define and evaluate the core and valence electronic relaxation upon ionization of [FeX(4)](2)(-). The presence of intense yet formally forbidden charge-transfer satellite peaks in the PES data is a direct reflection of electronic relaxation. The phenomenon is evaluated as a function of charge redistribution at the metal center (Deltaq(rlx)) resulting from changes in the electronic structure. This charge redistribution is calculated from experimental core and valence PES data using a valence bond configuration interaction (VBCI) model. It is found that electronic relaxation is very large for both core (Fe 2p) and valence (Fe 3d) ionization processes and that it is greater in [Fe(SR)(4)](2)(-) than in [FeCl(4)](2)(-). Similar results are obtained from DFT calculations. The results suggest that, although the lowest-energy valence ionization (from the redox-active molecular orbital) is metal-based, electronic relaxation causes a dramatic redistribution of electron density ( approximately 0.7ē) from the ligands to the metal center corresponding to a generalized increase in covalency over all M-L bonds. The more covalent tetrathiolate achieves a larger Deltaq(rlx) because the LMCT states responsible for relaxation are significantly lower in energy than those in the tetrachloride. The large observed electronic relaxation can make significant contributions to the thermodynamics and kinetics of electron transfer in inorganic systems.  相似文献   

2.
Fu YJ  Yang X  Wang XB  Wang LS 《Inorganic chemistry》2004,43(12):3647-3655
We used photoelectron spectroscopy (PES) to study how the terminal ligands influence the electronic structure and redox properties of the [4Fe-4S] cubane in several series of ligand-substituted analogue complexes: [Fe(4)S(4)Cl(4-x)(CN)(x)](2-), [Fe(4)S(4)Cl(4-x)(SCN)(x)](2-), [Fe(4)S(4)Cl(4-x)(OAc)(x)](2-), [Fe(4)S(4)(SC(2)H(5))(4-x)(OPr)(x)](2-), and [Fe(4)S(4)(SC(2)H(5))(4-x)Cl(x)](2-) (x = 0-4). All the ligand-substituted complexes gave similar PES spectral features as the parents, suggesting that the mixed-ligand coordination does not perturb the electronic structure of the cubane core significantly. The terminal ligands, however, have profound effects on the electron binding energies of the cubane and induce significant shifts of the PES spectra, increasing in the order SC(2)H(5)(-) --> Cl(-) --> OAc(-)/OPr(-) --> CN(-) --> SCN(-). A linear relationship between the electron binding energies and the substitution number x was observed for each series, indicating that each ligand contributes independently and additively to the total binding energy. The electron binding energies of the gaseous complexes represent their intrinsic oxidation energies; the observed linear dependence on x is consistent with similar observations on the redox potentials of mixed-ligand cubane complexes in solution. The current study reveals the electrostatic nature of the interaction between the [4Fe-4S] cubane core and its coordination environment and provides further evidence for the electronic and structural stability of the cubane core and its robustness as a structural and functional unit in Fe-S proteins.  相似文献   

3.
Using photodetachment photoelectron spectroscopy (PES) in the gas phase, we investigated the electronic structure and chemical bonding of six anionic [Mo(V)O](3+) complexes, [MoOX(4)](-) (where X = Cl (1), SPh (2), and SPh-p-Cl (3)), [MoO(edt)(2)](-) (4), [MoO(bdt)(2)](-) (5), and [MoO(bdtCl(2))(2)](-) (6) (where edt = ethane-1,2-dithiolate, bdt = benzene-1,2-dithiolate, and bdtCl(2) = 3,6-dichlorobenzene-1,2-dithiolate). The gas-phase PES data revealed a wealth of new electronic structure information about the [Mo(V)O](3+) complexes. The energy separations between the highest occupied molecular orbital (HOMO) and HOMO-1 were observed to be dependent on the O-Mo-S-C(alpha) dihedral angles and ligand types, being relatively large for the monodentate ligands, 1.32 eV for Cl and 0.78 eV for SPh and SPhCl, compared to those of the bidentate dithiolate complexes, 0.47 eV for edt and 0.44 eV for bdt and bdtCl(2). The threshold PES feature in all six species is shown to have the same origin and is due to detaching the single unpaired electron in the HOMO, mainly of Mo 4d character. This result is consistent with previous theoretical calculations and is verified by comparison with the PES spectra of two d(0) complexes, [VO(bdt)(2)](-) and [VO(bdtCl(2))(2)](-). The observed PES features are interpreted on the basis of theoretical calculations and previous spectroscopic studies in the condensed phase.  相似文献   

4.
The heterotrinuclear complexes trans- and cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) are unprecedented examples of mixed valence complexes based on ferrocyanide bearing three different metal centers. These complexes have been assembled in a stepwise manner from their {trans-III-L(14S)Co(III)}, {cis-VI-L(15)Rh(III)}, and {Fe(II)(CN)(6)} building blocks. The preparative procedure follows that found for other known discrete assemblies of mixed valence dinuclear Cr(III)/Fe(II) and polynuclear Co(III)/Fe(II) complexes of the same family. A simple slow substitution process of [Fe(II)(CN)(6)](4-) on inert cis-VI-[Rh(III)L(15)(OH)](2+) leads to the preparation of the new dinuclear mixed valence complex [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) with a redox reactivity that parallels that found for dinuclear complexes from the same family. The combination of this dinuclear precursor with mononuclear trans-III-[Co(III)L(14S)Cl](2+) enables a redox-assisted substitution on the transient {L(14S)Co(II)} unit to form [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+). The structure of the final cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) complex has been established via X-ray diffraction and fully agrees with its solution spectroscopy and electrochemistry data. The new species [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) and [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) show the expected electronic spectra and electrochemical features typical of Class II mixed valence complexes. Interestingly, in the trinuclear complex, these features appear to be a simple addition of those for the Rh(III)/Fe(II) and Co(III)/Fe(II) moieties, despite the vast differences existent in the electronic spectra and electrochemical properties of the two isolated units.  相似文献   

5.
Crystallographic studies of [Fe(SR)(4)](2-) (R is an alkyl or aryl residue) have shown that the Fe(II)S(4) cores of these complexes have (pseudo) D2d symmetry. Here we analyze the possibility that these structures result from a Jahn-Teller (JT) distortion that arises from the e(3z(2) - r(2), x(2) - y(2)) orbital ground state of Fe(II) in T(d)symmetry. Special attention is paid to the influence of the second-nearest neighbors of Fe, which lowers the symmetry and reduces the full JT effect to a smaller, pseudo JT effect (PJT). To estimate the size of the PJT distortion, we have determined the vibronic parameters and orbital state energies for a number of [Fe(SR)(4)](2-) models using density functional theory (DFT). Subsequently, this information is used for evaluating the adiabatic potential surfaces in the space of the JT-active coordinates of the FeS(4) moiety. The surfaces reveal that the JT effect of Fe(II) is completely quenched by the tetrathiolate coordination.  相似文献   

6.
High-level ab initio calculations using the CASPT2 method and extensive basis sets were performed on the energy differences of the high-[(5)T(2g):t(2g) (4)e(g) (2)] and low-[(1)A(1g):t(2g) (6)] spin states of the pseudo-octahedral Fe(II) complexes [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), and [Fe(bpy)(3)](2+). The results are compared to the results obtained from density functional theory calculations with the generalized gradient approximation functional BP86 and two hybrid functionals B3LYP and PBE0, and serve as a calibration for the latter methods. We find that large basis set CASPT2 calculations may provide results for the high-spin/low-spin splitting DeltaE(HL) that are accurate to within 1000 cm(-1), provided they are based on an adequately large CAS[10,12] reference wave function. The latter condition was found to be much more stringent for [Fe(bpy)(3)](2+) than for the other two complexes. Our "best" results for DeltaE(HL) (including a zero-point energy correction) are -17 690 cm(-1) for [Fe(H(2)O)(6)](2+), -8389 cm(-1) for [Fe(NH(3))(6)](2+), and 3820 cm(-1) for [Fe(bpy)(3)](2+).  相似文献   

7.
He C  Lippard SJ 《Inorganic chemistry》2001,40(7):1414-1420
A bis(mu-carboxylato)(mu-1,8-naphthyridine)diiron(II) complex, [Fe2(BPMAN)(mu-O2CPhCy)2](OTf)2 (1), was prepared by using the 1,8-naphthyridine-based dinucleating ligand BPMAN, where BPMAN = 2,7-bis[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine. The cyclic voltammogram (CV) of this complex in CH2Cl2 exhibited two reversible one-electron redox waves at +296 mV (DeltaE(p) = 80 mV) and +781 mV (DeltaE(p) = 74 mV) vs Cp2Fe+/Cp2Fe, corresponding to the FeIIIFeII/FeIIFeII and FeIIIFeIII/FeIIIFeII couples, respectively. This result is unprecedented for diiron complexes having no single atom bridge. Dinuclear complexes [Fe2(BPMAN)(mu-OH)(mu-O2CPhCy)](OTf)2 (2) and [Mn2(BPMAN)(mu-O2CPhCy)2](OTf)2 (3) were also synthesized and structurally characterized. The cyclic voltammogram of 2 in CH2Cl2 exhibited one reversible redox wave at -22 mV only when the potential was kept below +400 mV. The CV of 3 showed irreversible oxidation at potentials above +900 mV. Diiron(II) complexes [Fe2(BEAN)(mu-O2CPhCy)3](OTf) (4) and [Fe2(BBBAN)(mu-OAc)2(OTf)](OTf) (6) were also prepared and characterized, where BEAN = 2,7-bis(N,N-diethylaminomethyl)-1,8-naphthyridine and BBBAN = 2,7-bis[2-[2-(1-methyl)benzimidazolylethyl]-N-benzylaminomethyl]-1,8-naphthyridine. The cyclic voltammograms of these complexes were recorded. The M?ssbauer properties of the diiron compounds were studied.  相似文献   

8.
The kinetics of electron transfer for rubredoxins are examined using density functional methods to determine the electronic structure characteristics that influence and allow for fast electron self-exchange in these electron-transport proteins. Potential energy surfaces for [FeX(4)](2-,1-) models confirm that the inner-sphere reorganization energy is inherently small for tetrathiolates ( approximately 0.1 eV), as evidenced by the only small changes in the equilibrium Fe-S bond distance during redox (Deltar(redox) approximately 0.05 A). It is concluded that electronic relaxation and covalency in the reduced state allow for this small in this case relative to other redox couples, such as the tetrachloride. Using a large computational model to include the protein medium surrounding the [Fe(SCys)(4)](2-,1-) active site in Desulfovibrio vulgaris Rubredoxin, the electronic coupling matrix element for electron self-exchange is defined for direct active-site contact (H0(DA)). Simple Beratan-Onuchic model is used to extend coupling over the complete surface of the protein to provide an understanding of probable electron-transfer pathways. Regions of similar coupling properties are grouped together to define a surface coupling map, which reveals that very efficient self-exchange occurs only within 4 sigma-bonds of the active site. Longer-range electron transfer cannot support the fast rates of electron self-exchange observed experimentally. Pathways directly through the two surface cysteinate ligands dominate, but surface-accessible amides hydrogen-bonded to the cysteinates also contribute significantly to the rate of electron self-exchange.  相似文献   

9.
Mononuclear nonheme iron(IV)-oxo complexes with two different topologies, cis-α-[Fe(IV)(O)(BQCN)](2+) and cis-β-[Fe(IV)(O)(BQCN)](2+), were synthesized and characterized with various spectroscopic methods. The effect of ligand topology on the reactivities of nonheme iron(IV)-oxo complexes was investigated in C-H bond activation and oxygen atom-transfer reactions; cis-α-[Fe(IV)(O)(BQCN)](2+) was more reactive than cis-β-[Fe(IV)(O)(BQCN)](2+) in the oxidation reactions. The reactivity difference between the cis-α and cis-β isomers of [Fe(IV)(O)(BQCN)](2+) was rationalized with the Fe(IV/III) redox potentials of the iron(IV)-oxo complexes: the Fe(IV/III) redox potential of the cis-α isomer was 0.11 V higher than that of the cis-β isomer.  相似文献   

10.
A detailed understanding of the electronic structure of transition metal bis(dithiolene) complexes is important because of their interesting redox, magnetic, optical, and conducting properties and their relevance to enzymes containing molybdenum and tungsten bis(dithiolene) centers. The electronic structures of the bis(dithiolene) anions [M(mnt)(2)](n-) (M = Ni, Pd, Pt; mnt = 1,2-S(2)C(2)(CN)(2); n = 0-2) were examined by a combination of photodetachment photoelectron spectroscopy (PES) and density functional theory calculations. The combined experimental and theoretical data provide insight into the molecular orbital energy levels of [M(mnt)(2)](2-) and the ground and excited states of [M(mnt)(2)](1-) and [M(mnt)(2)]. Detachment features from ligand-based orbitals of [M(mnt)(2)](2-) occur at similar energies for each species, independent of the metal center, while those arising from metal-based orbitals occur at higher energies for the heavier congeners. Electronic excitation energies inferred for [M(mnt)(2)](1-) from the PES experiments agree well with those obtained in optical absorption experiments in solution, with the PES experiments providing additional insight into the changes in energy of these transitions as a function of metal. The singly charged anions [M(mnt)(2)](1-) were also prepared and studied independently. Electron detachment from the ground states of these doublet anions accessed the lowest singlet and triplet states of neutral [M(mnt)(2)], thereby providing a direct experimental measure of their singlet-triplet splitting.  相似文献   

11.
A trinuclear [[Ru(II)(bpy)(2)(bpy-terpy)](2)Fe(II)](6+) complex (I) in which a Fe(II)-bis-terpyridine-like centre is covalently linked to two Ru(II)-tris-bipyridine-like moieties by a bridging bipyridine-terpyridine ligand has been synthesised and characterised. Its electrochemical, photophysical and photochemical properties have been investigated in CH(3)CN and compared with those of mononuclear model complexes. The cyclic voltammetry of (I) exhibits, in the positive region, two successive reversible oxidation processes, corresponding to the Fe(III)/Fe(II) and Ru(III)/Ru(II) redox couples. These systems are clearly separated (DeltaE(1/2) = 160 mV), demonstrating the lack of an electronic connection between the two subunits. The two oxidized forms of the complex, [[Ru(II)(bpy)(2)(bpy-terpy)](2)Fe(III)](7+) and [[Ru(III)(bpy)(2)(terpy-bpy)](2)Fe(III)](9+), obtained after two successive exhaustive electrolyses, are stable. (I) is poorly luminescent, indicating that the covalent linkage of the Ru(II)-tris-bipyridine to the Fe(II)-bis-terpyridine subunit leads to a strong quenching of the Ru(II)* excited state by energy transfer to the Fe(II) centre. Luminescence lifetime experiments show that the process occurs within 6 ns. The nature of the energy transfer process is discussed and an intramolecular energy exchange is proposed as a preferable deactivation pathway. Nevertheless this energy transfer can be efficiently quenched by an electron transfer process in the presence of a large excess of the 4-bromophenyl diazonium cation, playing the role of a sacrificial oxidant. Finally complete photoinduced oxidation of (I) has been performed by continuous photolysis experiments in the presence of a large excess of this sacrificial oxidant. The comparison with a mixture of the corresponding mononuclear model complexes has been made.  相似文献   

12.
The four-coordinate iron complexes, [Fe(III)(pda(2-))(pda(.-))] (1) and [AsPh(4)](2)[Fe(II)(pda(2-))(2)] (2) were synthesized and fully characterized; pda(2-) is the closed-shell ligand N,N'-bis(pentafluorophenyl)-o-phenylenediamido(2-), and pda(.-) represents its one-electron-oxidized pi-radical anion. Single-crystal X-ray diffraction studies of 1 and 2 performed at 100(2) K reveal a distorted tetrahedral coordination environment at the iron centers, as a result of the intramolecular pi-pi interactions between C(6)F(5) rings. The electronic structures of 1 and 2 were unambiguously determined by a combination of (57)Fe M?ssbauer and electronic spectroscopy, magnetic susceptibility measurements, X-ray crystallography, and DFT calculations. Compound 1 contains an intermediate-spin Fe(III) ion (S(Fe)=3/2) strongly antiferromagnetically coupled to a pi-ligand radical (S(R)=1/2) yielding an S(t)=1 ground state. Complex 2 possesses a high-spin Fe(II) center (S(Fe)=2) with two closed-shell dianionic ligands. Complexes 1 and 2 are members of the redox series [Fe(pda)(2)](n) with n=0 for 1 and n=2- for 2. The anion n=1- has been reported previously in the coordination salt [Fe(dad)(3)][Fe(pda)(2)] (3; dad=N,N'-bis(phenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene). A complicated temperature-dependent electronic structure has been observed for this salt. Here, DFT calculations performed on 3 confirm the previous assignments of spin- and oxidation-states. Thus, [Fe(pda)(2)](n) (n=0, 1-, 2-) constitutes an electron-transfer series, which has also been established by cyclic voltammetry; the mono- and dications (n=1+ and 2+) are also accessible in solution, but have not been further investigated. The (57)Fe M?ssbauer spectra of [Fe(pda)(2)](n) species in 1 and 3 show extremely large quadrupole splitting constants due to addition of the valence and covalence contributions that have been confirmed by DFT calculations.  相似文献   

13.
Yeh SW  Lin CW  Li YW  Hsu IJ  Chen CH  Jang LY  Lee JF  Liaw WF 《Inorganic chemistry》2012,51(7):4076-4087
The reversible redox transformations [(NO)(2)Fe(S(t)Bu)(2)](-) ? [Fe(μ-S(t)Bu)(NO)(2)](2)(2-) ? [Fe(μ-S(t)Bu)(NO)(2)](2)(-) ? [Fe(μ-S(t)Bu)(NO)(2)](2) and [cation][(NO)(2)Fe(SEt)(2)] ? [cation](2)[(NO)(2)Fe(SEt)(2)] (cation = K(+)-18-crown-6 ether) are demonstrated. The countercation of the {Fe(NO)(2)}(9) dinitrosyliron complexes (DNICs) functions to control the formation of the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) dianionic reduced Roussin's red ester (RRE) [PPN](2)[Fe(μ-SR)(NO)(2)](2) or the {Fe(NO)(2)}(10) dianionic reduced monomeric DNIC [K(+)-18-crown-6 ether](2)[(NO)(2)Fe(SR)(2)] upon reduction of the {Fe(NO)(2)}(9) DNICs [cation][(NO)(2)Fe(SR)(2)] (cation = PPN(+), K(+)-18-crown-6 ether; R = alkyl). The binding preference of ligands [OPh](-)/[SR](-) toward the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) motif of dianionic reduced RRE follows the ligand-displacement series [SR](-) > [OPh](-). Compared to the Fe K-edge preedge energy falling within the range of 7113.6-7113.8 eV for the dinuclear {Fe(NO)(2)}(9){Fe(NO)(2)}(9) DNICs and 7113.4-7113.8 eV for the mononuclear {Fe(NO)(2)}(9) DNICs, the {Fe(NO)(2)}(10) dianionic reduced monomeric DNICs and the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) dianionic reduced RREs containing S/O/N-ligation modes display the characteristic preedge energy 7113.1-7113.3 eV, which may be adopted to probe the formation of the EPR-silent {Fe(NO)(2)}(10)-{Fe(NO)(2)}(10) dianionic reduced RREs and {Fe(NO)(2)}(10) dianionic reduced monomeric DNICs in biology. In addition to the characteristic Fe/S K-edge preedge energy, the IR ν(NO) spectra may also be adopted to characterize and discriminate [(NO)(2)Fe(μ-S(t)Bu)](2) [IR ν(NO) 1809 vw, 1778 s, 1753 s cm(-1) (KBr)], [Fe(μ-S(t)Bu)(NO)(2)](2)(-) [IR ν(NO) 1674 s, 1651 s cm(-1) (KBr)], [Fe(μ-S(t)Bu)(NO)(2)](2)(2-) [IR ν(NO) 1637 m, 1613 s, 1578 s, 1567 s cm(-1) (KBr)], and [K-18-crown-6 ether](2)[(NO)(2)Fe(SEt)(2)] [IR ν(NO) 1604 s, 1560 s cm(-1) (KBr)].  相似文献   

14.
Electrochemically enhanced DNA detection was demonstrated by utilizing the couple of a synthesized ferrocene-terminated peptide nucleic acid (PNA) with a cysteine anchor and a sacrificial electron donor [Fe(CN)(6)](4-). DNA detection sensors were prepared by modifying a gold electrode surface with a mixed monolayer of the probe PNA and 11-hydroxy-1-undecanethiol (11-HUT), protecting [Fe(CN)(6)](4-) from any unexpected redox reaction. Before hybridization, the terminal ferrocene moiety of the probe was subject to a redox reaction due to the flexible probe structure and, in the presence of [Fe(CN)(6)](4-), the observed current was amplified based on regeneration of the ferrocene moiety. Hybridization decreased the redox current of the ferrocene. This occurred because hybridization rigidified the probe structure: the ferrocene moiety was then removed from the electrode surface, and the redox reaction of [Fe(CN)(6)](4-) was again prevented. The change in the anodic current before and after hybridization was enhanced 1.75-fold by using the electron donor [Fe(CN)(6)](4-). Sequence-specific detection of the complementary target DNA was also demonstrated.  相似文献   

15.
Determining the redox energetics of redox site analogues of metalloproteins is essential in unraveling the various contributions to electron transfer properties of these proteins. Since studies of the [4Fe-4S] analogues show that the energies are dependent on the ligand dihedral angles, broken symmetry density functional theory (BS-DFT) with the B3LYP functional and double-ζ basis sets calculations of optimized geometries and electron detachment energies of [1Fe] rubredoxin analogues are compared to crystal structures and gas-phase photoelectron spectroscopy data, respectively, for [Fe(SCH(3))(4)](0/1-/2-), [Fe(S(2)-o-xyl)(2)](0/1-/2-), and Na(+)[Fe(S(2)-o-xyl)(2)](1-/2-) in different conformations. In particular, the study of Na(+)[Fe(S(2)-o-xyl)(2)](1-/2-) is the only direct comparison of calculated and experimental gas phase detachment energies for the 1-/2- couple found in the rubredoxins. These results show that variations in the inner sphere energetics by up to ~0.4 eV can be caused by differences in the ligand dihedral angles in either or both redox states. Moreover, these results indicate that the protein stabilizes the conformation that favors reduction. In addition, the free energies and reorganization energies of oxidation and reduction as well as electrostatic potential charges are calculated, which can be used as estimates in continuum electrostatic calculations of electron transfer properties of [1Fe] proteins.  相似文献   

16.
X-ray structures for six Fe(II) and Fe(III) complexes from two closely heptadentate N-tripodal ligands, L1H(3) = tris[(imidazol-4-yl)-3-aza-3-butenyl]amine and L2H(3) = tris[(imidazol-2-yl)-3-aza-3-butenyl]amine, are described: three complexes in the L1 series (namely, [Fe(II)(L1H(3))](2+) and [Fe(III)(L1H(3))](3+) at low pH and [Fe(III)(L1)](0) at high pH) and three complexes in the L2 series (namely, [Fe(II)(L2H(3))](2+) at low pH and [Fe(II)(L2H)](0) and [Fe(III)(L2)](0) at high pH). Most of these complexes are stable in both Fe(II) and Fe(III) redox states and with the ligand in various protonation states. In the solid state, hydrogen bonds networks were obtained. Structural differences induced by 2- or 4-imidazole substitution are described and discussed. In solution, interconversions between different forms, with regard to oxidation and protonation states, were investigated by UV-visible spectroscopy, cyclic voltammetry, and potentiometry. The deprotonation pattern of these polyimidazole iron(II) and iron(III) complexes is described in detail. pK(a)s of the imidazolate/imidazole moieties in MeOH/H(2)O are reported. Two new species, namely, [Fe(II)(L1)](-) and [Fe(II)(L2)](-), were shown to be obtained in DMSO upon strong base addition and characterized by UV-vis spectroscopy and cyclic voltammetry. Half-wave potentials of Fe(III)/Fe(II) complexes with ligand moieties in several protonation states are reported, both in DMSO and in MeOH/H(2)O. Because of the presence of free imidazole groups coordinated to the iron, the potential of the iron(III)/iron(II) couples can be tuned by pH. A shift of DeltaE = E(deprot) - E(prot) ranging from -270 to -320 mV per exchanged proton in DMSO was measured. This study shows moreover that interconversions (with regard to both redox and protonation states) can be reversed several times. As the complexes have been isolated in order to be tested as superoxide dismutase mimics, preliminary reactions with dioxygen and with superoxide, considered as oxidant and reducer of biological importance, are reported. In these two series, O(2)(-) behaves either as a base or as a reducer and no adducts have been observed.  相似文献   

17.
Lu TT  Lai SH  Li YW  Hsu IJ  Jang LY  Lee JF  Chen IC  Liaw WF 《Inorganic chemistry》2011,50(12):5396-5406
In addition to probing the formation of dinitrosyl iron complexes (DNICs) by the characteristic Fe K-edge pre-edge absorption energy ranging from 7113.4 to 7113.8 eV, the distinct S K-edge pre-edge absorption energy and pattern can serve as an efficient tool to unambiguously characterize and discriminate mononuclear DNICs and dinuclear DNICs containing bridged-thiolate and bridged-sulfide ligands. The higher Fe-S bond covalency modulated by the stronger electron-donating thiolates promotes the Fe → NO π-electron back-donation to strengthen the Fe-NO bond and weaken the NO-release ability of the mononuclear DNICs, which is supported by the Raman ν(Fe-NO) stretching frequency. The Fe-S bond covalency of DNICs further rationalizes the binding preference of the {Fe(NO)(2)} motif toward thiolates following the trend of [SEt](-) > [SPh](-) > [SC(7)H(4)SN](-). The relative d-manifold energy derived from S K-edge XAS as well as the Fe K-edge pre-edge energy reveals that the electronic structure of the {Fe(NO)(2)}(9) core of the mononuclear DNICs [(NO)(2)Fe(SR)(2)](-) is best described as {Fe(III)(NO(-))(2)}(9) compared to [{Fe(III)(NO(-))(2)}(9)-{Fe(III)(NO(-))(2)}(9)] for the dinuclear DNICs [Fe(2)(μ-SEt)(μ-S)(NO)(4)](-) and [Fe(2)(μ-S)(2)(NO)(4)](2-).  相似文献   

18.
Reactions of NO and CO with Fe(II) complexes of the tripodal trithiolate ligands NS3 and PS3* yield trigonal-bipyramidal (TBP) complexes with varying redox states and reactivity patterns with respect to dissociation of the diatomic ligand. The previously reported four-coordinate [Fe(II)(NS3)](-) complex reacts irreversibly with NO gas to yield the S = 3/2 {FeNO}(7) [Fe(NS3)(NO)](-) anion, isolated as the Me(4)N(+) salt. In contrast, the reaction of NO with the species generated by the reaction of FeCl(2) with Li(3)PS3* gives a high yield of the neutral, TBP, S = 1 complex, [Fe(PS3*)(NO)], the first example of a paramagnetic {FeNO}(6) complex. X-ray crystallographic analyses show that both [Fe(NS3)(NO)](-) and [Fe(PS3*)(NO)] feature short Fe-N(NO) distances, 1.756(6) and 1.676(3) A, respectively. However, whereas [Fe(NS3)(NO)]- exhibits a distinctly bent FeNO angle and a chiral pinwheel conformation of the NS3 ligand, [Fe(PS3*)(NO)] has nearly C(3v) local symmetry and a linear FeNO unit. The S = 1 [Fe(II)(PS3)L] complexes, where L = 1-MeIm, CN(-), CO, and NO(+), exhibit a pronounced lengthening of the Fe-P distances along the series, the values being 2.101(2), 2.142(1), 2.165(7), and 2.240(1) A, respectively. This order correlates with the pi-backbonding ability of the fifth ligand L. The cyclic voltammogram of the [Fe(NS3)(NO)](-) anion shows an irreversible oxidation at +0.394 V (vs SCE), apparently with loss of NO, when scanned anodically in DMF. In contrast, [Fe(PS3*)(NO)] exhibits a reversible {FeNO}(6)/{FeNO}(7) couple at a low potential of -0.127 V. Qualitatively consistent with these electrochemical findings, DFT (PW91/STO-TZP) calculations predict a substantially lower gas-phase adiabatic ionization potential for the [Fe(PS3)(NO)](-) anion (2.06 eV) than for [Fe(NS3)(NO)](-) (2.55 eV). The greater instability of the {FeNO}(7) state with the PS3* ligand results from a stronger antibonding interaction involving the metal d(z(2)) orbital and the phosphine lone pair than the analogous orbital interaction in the NS3 case. The antibonding interaction involving the NS3 amine lone pair affords a relatively "stereochemically active" dz2 electron, the z direction being roughly along the Fe-N(NO) vector. As a result, the {FeNO}(7) unit is substantially bent. By contrast, the lack of a trans ligand in [Fe(S(t)Bu)3(NO)](-), a rare example of a tetrahedral {FeNO}(7) complex, results in a "stereochemically inactive" d(z(2)) orbital and an essentially linear FeNO unit.  相似文献   

19.
To probe how H-bonding effects the redox potential changes in Fe-S proteins, we produced and studied a series of gaseous cubane-type analogue complexes, [Fe(4)S(4)(SEt)(3)(SC(n)H(2n+1))](2-) and [Fe(4)S(4)(SEt)(3)(SC(n)H(2n)OH)](2-) (n = 4, 6, 11; Et = C(2)H(5)). Intrinsic redox potentials for the [Fe(4)S(4)](2+/3+) redox couple involved in these complexes were measured by photoelectron spectroscopy. The oxidation energies from [Fe(4)S(4)(SEt)(3)(SC(n)H(2n)OH)](2-) to [Fe(4)S(4)(SEt)(3)(SC(n)H(2n)OH)](-) were determined directly from the photoelectron spectra to be approximately 130 meV higher than those for the corresponding [Fe(4)S(4)(SEt)(3)(SC(n)H(2n+1))](2-) systems, because of the OH...S hydrogen bond in the former. Preliminary Monte Carlo and density functional calculations showed that the H-bonding takes place between the -OH group and the S on the terminal ligand in [Fe(4)S(4)(SEt)(3)(SC(6)H(12)OH)](2-). The current data provide a direct experimental measure of a net H-bonding effect on the redox potential of [Fe(4)S(4)] clusters without the perturbation of other environmental effects.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号