首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Two new chiral pre-ligands, (R)-3,3'-bis(tetramethylcyclopentadienyl)-2,2'-bismethoxy-1,1'-bisnaphthalene (1) and (R)-3-tetramethylcyclopentadienyl-2,2'-bismethoxy-1,1'-bisnaphthalene (2), were synthesized by reaction of (R)-3,3'-dilithium-2,2'-bismethoxy-1,1'-bisnaphthalene with 2,3,4,5-tetramethyl-2-cyclopentenone at room temperature. Treatment of the pre-ligands 1 and 2 with butyllithium and Me(3)SiCl first, and subsequently with TiCl(4) (2 and 1 equiv for 1 and 2, respectively) afforded a binuclear complex (R)-3,3'-bis[(tetramethylcyclopentadienyl)trichlorotitanium]-2,2'-bismethoxy-1,1'-bisnaphthalene (3) and a mononuclear complex (R)-3-(tetramethylcyclopentadienyl)trichlorotitanium-2,2'-bismethoxy-1,1'-bisnaphthalene (4) in moderate yields. Complexes 3 and 4 were further converted into constrained geometry complexes (R)-1,1'-bis{2,2'-naphthoxy-3,3'-bis[(tetramethylcyclopentadienyl)dibromotitanium]} (5) and (R)-1-(2-naphthoxy)-1'-(2'-naphthol)-3-(tetramethylcyclopentadienyl)dibromotitanium (6) by treatment with BBr(3). The pre-ligands 1 and 2 were characterized by (1)H and (13)C NMR and high resolution mass spectroscopy (HRMS), and the new titanium complexes 3-6 were characterized by (1)H and (13)C NMR and elemental analyses. Molecular structures of 4, 5, and 6 were determined by single-crystal X-ray diffraction analysis. Complexes 4, 5, and 6 all have a pseudo-octahedral coordination environment and adopt a three-legged piano stool geometry around the titanium atom in their solid state structures. When activated with Al(i)Bu(3) and Ph(3)CB(C(6)F(5))(4), the chiral complexes 5 and 6 show moderate catalytic activities for propylene, 1-hexene, and 5-ethylidene-2-norbornene (ENB) polymerization and ethylene/1-hexene copolymerization. The polymers produced by the chiral 5/(i)Bu(3)Al/Ph(3)CB(C(6)F(5))(4) catalyst system from the 1-hexene, and ENB polymerization and ethylene/1-hexene copolymerization with high comonomer contents exhibit optical activity.  相似文献   

2.
The self-assembly reactions between the fluorinated ditopic ligand 1,4-bis(4-pyridyl)tetrafluorobenzene (A) and different nitrogen-protected palladium(II) and platinum(II) complexes have been investigated. While dynamic equilibria between molecular triangles and squares were observed when the diimine compounds 4,4'-R2bipy (bipy = 2,2'-bipyridine; R = H, Me, t-Bu) were employed as ancillary ligands, only square species were obtained from ethylenediamine (en) derivatives. Characterization of the obtained metallomacrocycles was accomplished by 1H and 19F NMR spectroscopy in combination with electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR). Molecular dynamics simulations (UFF) have been performed to interpret the influence of the fluorinated ring on the square/triangle relative stability. Density functional calculations using the GIAO method have been employed for the interpretation of the chemical shift assignments. The study of the ability of these compounds to act as hosts of electron-rich aromatic guests has shown that the palladium ethylenediamine square is capable of establishing this type of intermolecular interaction exclusively in aqueous media. The host-guest stoichiometry and association constants have been determinated by 1H NMR spectroscopy.  相似文献   

3.
Dinuclear gold(I) complexes [mu-(4,4'-CN-R-NC){Au(C6F4OC4H9)}2] [R = 1,4-phenylene, n = 8; R = 4,4'-biphenylene, 2,2'-dichloro-4,4'-biphenylene, 2,2'-dimethyl-4,4'-biphenylene, n = 4,6,8,10] have been prepared and their liquid crystal behavior and optical properties studied. Although the free ligands are not mesomorphic, all the gold(I) derivatives described, except the phenylisonitrilegold(I) derivative [mu-(1,4-CN-C6H4-NC){Au(C6F4OC8H17)}2], display liquid crystal behavior, giving rise to a nematic mesophase. The transition temperatures decrease in the order 4-4'-biphenylene > 2,2'-dichloro-4-4'-biphenylene > 2,2'dimethyl-4-4'-biphenylene. All compounds show photoluminescence in the solid state and in solution. The single-crystal X-ray diffraction structures of [mu-(4,4'-CN-R-NC){Au(C6F4OCnH2n+1)}2] (R = 4-4'-biphenylene and 2,2'-dichloro-4-4'-biphenylene) have been determined confirming the rodlike structure of the molecule, with a linear coordination around the gold atoms. There are Au...Au interactions in the 2,2'-dichlorobiphenyl derivative but not in the 4-4'-biphenyl compound.  相似文献   

4.
瞿志荣 《无机化学学报》2007,23(12):2126-2127
Uranium(Ⅵ) complex [UO2((R,S)-1,1′-binaphthylene-2,2′-dicarboxylate)(H2O)] was obtained by the hydrothermal treatment of UO2(NO3)2·6H2O with (R,S)-1,1′-binaphthylene-2,2′-dicarboxylic acid(BCA) (L) in water at 180 ℃ in Pyrex tube. The crystal belongs to monoclinic system, space group C2/c, with a=1.640 3(3) nm, b=1.196 7(2) nm, c=1.066 3(17) nm, β=104.412(4)°, V=2.027 2(6) nm3Z=4. CCDC: 659617.  相似文献   

5.
A new series of group 5 metal amides have been prepared from the reaction between V(NMe(2))(4) or M(NMe(2))(5) (M = Nb, Ta) and chiral ligands, (R)-2,2'-bis(mesitoylamino)-1,1'-binaphthyl (1H(2)), (R)-5,5',6,6',7,7',8,8'-octahydro-2,2'-bis(mesitoylamino)-1,1'-binaphthyl (2H(2)), (R)-6,6'-dimethyl-2,2'-bis(mesitoylamino)-1,1'-biphenyl (3H(2)), (R)-2,2'-bis(mesitylenesulfonylamino)-6,6'-dimethyl-1,1'-biphenyl (4H(2)), (R)-2,2'-bis(diphenylthiophosphoramino)-1,1'-binaphthyl (5H(2)), (R)-2,2'-bis[(3-tert-butyl-2-hydroxybenzylidene)amino]-6,6'-dimethyl-1,1'-biphenyl (6H(2)), (R)-2,2'-bis[(3,5-di-tert-butyl-2-hydroxybenzylidene)amino]-6,6'-dimethyl-1,1'-biphenyl (7H(2)), (R)-2,2'-bis[(3-tert-butyl-2-hydroxybenzylidene)amino]-1,1'-binaphthyl (8H(2)), (S)-2-(mesitoylamino)-2'-(dimethylamino)-1,1'-binaphthyl (9H), and (R)-2-(mesitoylamino)-2'-(dimethylamino)-6,6'-dimethyl-1,1'-biphenyl (10H), which are derived from (R) or (S)-2,2'-diamino-1,1'-binaphthyl, and (R)-2,2'-diamino-6,6'-dimethyl-1,1'-biphenyl, respectively. Treatment of V(NMe(2))(4) or M(NMe(2))(5) (M = Nb, Ta) with 1 equiv of C(2)-symmetric amidate ligands 1H(2), 2H(2), 3H(2), 4H(2), and 5H(2), or Schiff base ligands 6H(2), 7H(2) and 8H(2) at room temperature gives, after recrystallization from a benzene, toluene or n-hexane solution, the vanadium amides (1)V(NMe(2))(2) (11), (2)V(NMe(2))(2) (14), (3)V(NMe(2))(2) (17), (5)V(NMe(2))(2) (22), (6)V(NMe(2))(2) (23) and (7)V(NMe(2))(2) (24), and niobium amides (1)Nb(NMe(2))(3) (12), (2)Nb(NMe(2))(3) (15), (3)Nb(NMe(2))(3) (18), (4)Nb(NMe(2))(3) (20) and [2-(3-Me(3)C-2-O-C(6)H(3)CHN)-2'-(N)-C(20)H(12)][2-(Me(2)N)(2)CH-6-CMe(3)-C(6)H(3)O]NbNMe(2)·C(7)H(8) (25·C(7)H(8)), and tantalum amides (1)Ta(NMe(2))(3) (13), (2)Ta(NMe(2))(3) (16), (3)Ta(NMe(2))(3) (19) and (4)Ta(NMe(2))(3) (21) respectively, in good yields. Reaction of V(NMe(2))(4) or M(NMe(2))(5) (M = Nb, Ta) with 2 equiv of C(1)-symmetric amidate ligands 9H or 10H at room temperature gives, after recrystallization from a toluene or n-hexane solution, the chiral bis-ligated vanadium amides (9)(2)V(NMe(2))(2)·3C(7)H(8) (27·3C(7)H(8)) and (10)V(NMe(2))(2) (28), and chiral bis-ligated metallaaziridine complexes (10)(2)M(NMe(2))(η(2)-CH(2)NMe) (M = Nb (29), Ta (30)) respectively, in good yields. The niobium and tantalum amidate complexes are stable in a toluene solution at or below 160 °C, while the vanadium amidate complexes degrade via diemthylamino group elimination at this temperature. For example, heating the complex (2)V(NMe(2))(2) (14) in toluene at 160 °C for four days leads to the isolation of the complex [(2)V](2)(μ-NMe(2))(2) (26) in 58% yield. These new complexes have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of complexes 12, 13, and 15-30 have further been confirmed by X-ray diffraction analyses. The vanadium amides are active chiral catalysts for the asymmetric hydroamination/cyclization of aminoalkenes, affording cyclic amines in moderate to good yields with good ee values (up to 80%), and the tantalum amides are outstanding chiral catalysts for the hydroaminoalkylation, giving chiral secondary amines in good yields with excellent ee values (up to 93%).  相似文献   

6.
The ligands 4,6-bis(pyrazol-1-yl)pyrimidine (bpzpm) and 4,6-bis(4-methylpyrazol-1-yl)pyrimidine (Me-bpzpm) were synthesized and their reactions with some palladium derivatives explored. Mononuclear or dinuclear neutral or cationic complexes were obtained by reaction of the ligands with 1 or 2 equiv of Pd(C6XF4)2(cod) (cod = 1,5-cyclooctadiene; X = F, H) or the palladium fragment [Pd(eta 3-2-Me-C3H4)(S)2]+ (S = acetone). The reaction of the dinuclear derivatives with 1 equiv of the respective free ligand immediately led to the regeneration of the mononuclear complexes. Except in the case of the synthesis of [[Pd(C6HF4)2][Pd(C6F5)2](bpzpm)], where two similar metallic groups are present, all attempts to obtain dinuclear asymmetric complexes with two different palladium fragments failed. Instead, the dinuclear symmetric complexes were formed. This result could be considered as an example of molecular recognition with the ligand acting as a ditopic receptor. This behavior is comparable to chemical symbiosis but in this case applied to the ligand rather than to the metal center as occurs normally. The polyfluorophenyl rings are situated on average in a perpendicular orientation with respect to the coordination plane. Their restricted rotation results in several atropoisomers for the complexes with m-C6HF4. Different cross-reaction experiments were carried out, and these showed the mobility of the metallic fragments, with the more difficult process being that involving the more strongly bonded polyfluorophenyl palladium groups. By means of 1H NMR variable temperature studies, the interconversion of the two isomers of [[Pd(eta 3-C4H7)]2-(bpzpm)]Tf2 (Tf = CF3SO3) was analyzed. In the case of [[Pd(eta 3-C4H7)](bpzpm)]Tf the existence of two processes, an intramolecular apparent allyl rotation and an intermolecular exchange of the allylpalladium fragments, has been demonstrated. Different delta Gc++ values at the coalescence temperatures have also been determined. An X-ray single-crystal analysis was carried out on [[Pd(eta 3-C4H7)]2(bpzpm)]Tf2, which crystallizes in the monoclinic system, space group I2/m, with a = 9.368(2), b = 16.191(3), c = 20.228(6) A, beta = 101.26(3), and Z = 4. Compound [[Pd(C6HF4)2](bpzpm)] crystallized in the triclinic system, space group P1, with a = 8.845(6), b = 12.6609(9), c = 12.826(3) A, alpha = 88.45(2), beta = 74.36(3), gamma = 89.32(2), and Z = 2.  相似文献   

7.
The synthesis, structures, and unusual reactivity of (C5R5)2ZrR'(ClPh)+ chlorobenzene complexes are described. The reaction of (C5R5)2ZrR'2 with [Ph3C][B(C6F5)4] in C6D5Cl affords [(C5R5)2ZrR'(ClC6D5)][B(C6F5)4] chlorobenzene complexes (1-d5, R' = CH2Ph and (C5R5)2 = (C5H5)2; 2a-d-d5, R' = Me and (C5R5)2 = rac-(1,2-ethylene(bis)indenyl) (2a), (C5H5)2 (2b), (C5H4Me)2 (2c), (C5Me5)2 (2d, C5Me5 = Cp*)). Complexes 1 and 2b,c are thermally robust but are converted to [{(C5R5)2Zr(mu-Cl)}2][B(C6F5)4]2 (4b,c) by a photochemical process in ClPh solution. In contrast, 2d undergoes facile thermal ortho-C-H activation to yield [Cp*2Zr(eta2-C,Cl-2-Cl-C6H4)][B(C6F5)4] (5), which slowly rearranges to [(eta4,eta1-C5Me5C6H4)Cp*ZrCl][B(C6F5)4] (6) via beta-Cl elimination and benzyne insertion into a Zr-CCp* bond. The higher thermal reactivity of 2d versus that of 1 and 2b,c is attributed to steric crowding associated with the Cp* ligands of 2d, which forces a ClPh ortho-hydrogen close to the Zr-Me group.  相似文献   

8.
Synthetic routes to methyl(aryl)alkynylpalladium(iv) motifs are presented, together with studies of selectivity in carbon-carbon coupling by reductive elimination from Pd(IV) centres. The iodonium reagents IPh(C[triple bond, length as m-dash]CR)(OTf) (R = SiMe(3), Bu(t), OTf = O(3)SCF(3)) oxidise Pd(II)Me(p-Tol)(L(2)) (1-3) [L(2) = 1,2-bis(dimethylphosphino)ethane (dmpe) (1), 2,2'-bipyridine (bpy) (2), 1,10-phenanthroline (phen) (3)] in acetone-d(6) or toluene-d(9) at -80 °C to form complexes Pd(IV)(OTf)Me(p-Tol)(C[triple bond, length as m-dash]CR)(L(2)) [R = SiMe(3), L(2) = dmpe (4), bpy (5), phen (6); R = Bu(t), L(2) = dmpe (7), bpy (8), phen (9)] which reductively eliminate predominantly (>90%) p-Tol-C[triple bond, length as m-dash]CR above ~-50 °C. NMR spectra show that isomeric mixtures are present for the Pd(IV) complexes: three for dmpe complexes (4, 7), and two for bpy and phen complexes (5, 6, 8, 9), with reversible reduction in the number of isomers to two occurring between -80 °C and -60 °C observed for the dmpe complex 4 in toluene-d(8). Kinetic data for reductive elimination from Pd(IV)(OTf)Me(p-Tol)(C[triple bond, length as m-dash]CSiMe(3))(dmpe) (4) yield similar activation parameters in acetone-d(6) (66 ± 2 kJ mol(-1), ΔH(?) 64 ± 2 kJ mol(-1), ΔS(?)-67 ± 2 J K(-1) mol(-1)) and toluene-d(8) (E(a) 68 ± 3 kJ mol(-1), ΔH(?) 66 ± 3 kJ mol(-1), ΔS(?)-74 ± 3 J K(-1) mol(-1)). The reaction rate in acetone-d(6) is unaffected by addition of sodium triflate, indicative of reductive elimination without prior dissociation of triflate. DFT computational studies at the B97-D level show that the energy difference between the three isomers of 4 is small (12.6 kJ mol(-1)), and is similar to the energy difference encompassing the six potential transition state structures from these isomers leading to three feasible C-C coupling products (13.0 kJ mol(-1)). The calculations are supportive of reductive elimination occurring directly from two of the three NMR observed isomers of 4, involving lower activation energies to form p-TolC[triple bond, length as m-dash]CSiMe(3) and earlier transition states than for other products, and involving coupling of carbon atoms with higher s character of σ-bonds (sp(2) for p-Tol, sp for C[triple bond, length as m-dash]C-SiMe(3)) to form the product with the strongest C-C bond energy of the potential coupling products. Reductive elimination occurs predominantly from the isomer with Me(3)SiC[triple bond, length as m-dash]C trans to OTf. Crystal structure analyses are presented for Pd(II)Me(p-Tol)(dmpe) (1), Pd(II)Me(p-Tol)(bpy) (2), and the acetonyl complex Pd(II)Me(CH(2)COMe)(bpy) (11).  相似文献   

9.
Reactions of methylphosphaalkyne, PCMe, with a digermene, R' 2GeGeR' 2 (R' = -CH(SiMe 3) 2), and two distannenes, R' 2SnSnR' 2 and Ar' 2SnSnAr' 2 (Ar' = C 6H 2Pr (i) 3-2,4,6), have given moderate to high yields of the first bridged 2,3,5,6-tetraphospha-1,4-dimethylidenecyclohexanes, [R 2E{C(Me)(H)PC(CH 2)P}] 2 (R = R' or Ar', E = Sn or Ge), all of which have been structurally characterized. Their mechanisms of formation are thought to involve successive [2 + 1] and [2 + 2] phosphaalkyne cycloaddition, heterocycle rearrangement, phosphaalkene/vinylphosphine tautomerization, and intermolecular hydrophosphination reactions. In one reaction, two intermediates have been spectroscopically observed and one trapped by coordination to one or two W(CO) 5 fragments, yielding the first diphosphagermole complexes, {[W(CO) 5} 1or2{R' 2Ge[C(Me)PC(Me)P]}], which have been structurally characterized. Differences between the reactivities of PCMe and PCBu (t) are highlighted.  相似文献   

10.
Reactions of the bis(bidentate) Schiff-bases N,N'-bis(6-alkyl-2-pyridylmethylene)ethane-1,2-diamine (where alkyl = H, Me, iPr) (L) with tetrakis(acetonitrile)copper(I) hexafluorophosphate and silver(I) hexafluorophosphate afforded, respectively, the double-stranded, dinuclear metal helicates [T-4-(R,R)]-(+/-)-[M2L2](PF6)2 (M = Cu, Ag). The helicates were characterized by 1H and 13C NMR spectroscopy, conductivity, microanalysis, and single-crystal X-ray structure determinations on selected compounds. Intermolecular ligand exchange and intramolecular inversion rates for the complexes were investigated by 1H NMR spectroscopy. Reversible intermolecular ligand exchange between two differently substituted helicates followed first-order kinetics. The rate constants (k) and corresponding half-lives (t(1/2)) for ligand exchange for the dicopper(I) helicates were k = (1.6-1.8) x 10(-6) s(-1) (t(1/2) = 110-120 h) in acetone-d6, k = 4.9 x 10(-6) s(-1) (t(1/2) = 40 h) in dichloromethane-d2, and k > 2 x 10(-3) s(-1) (t(1/2) < 5 min) in acetonitrile-d3. Ligand exchange for the disilver(I) helicates occurred with k > 2 x 10(-3) s(-1) (t(1/2) < 5 min). Racemization of the dicopper(I) helicate by an intramolecular mechanism was investigated by determination of the coalescence temperature for the diastereotopic isopropyl-Me groups in the appropriate complex, and DeltaG() > 76 kJ mol(-1) was calculated for the process in acetone-d6, nitromethane-d3, and dichloromethane-d2 with DeltaG() = 75 kJ mol(-1) in acetonitrile-d3. Complete anion exchange of the hexafluorophosphate salt of a dicopper(I) helicate with the enantiomerically pure Delta-(-)-tris(catecholato)arsenate(V) ([As(cat)3]-) in the presence of Dabco gave the two diastereomers (R,R)-[Cu2L2][Delta-(-)-[As(cat)3]]2 and (S,S)-[Cu2L2][Delta-(-)-[As(cat)3]]2 in up to 54% diastereomeric excess, as determined by (1)H NMR spectroscopy. The diastereomerically and enantiomerically pure salt (R,R)-[Cu(2)L2][Delta-(-)-[As(cat)3]]2 crystallized from the solution in a typical second-order asymmetric transformation. The asymmetric transformation of the dicopper(I) helicate is the first synthesis of a diastereomerically and enantiomerically pure dicopper(I) helicate containing achiral ligands.  相似文献   

11.
The title compound 3,3'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(2- (4-chlorophenylamino)quinazolin-4(3H)-one) 3 (C34H30Cl2N6O4, Mr = 657.54) has been synthesized and its crystal structure was determined by single-crystal X-ray diffraction analysis. It crystallizes in space group P1 with a = 9.9185(8), b = 10.6124(9), c = 15.4064(13) , α = 92.896(2), β = 103.813(2), γ = 94.635(2)°, V = 1565.5(2) 3, Z = 2, Dc = 1.395 g/cm3, μ = 0.257 mm–1, F(000) = 684, the final R = 0.0580 and wR = 0.1284 f...  相似文献   

12.
The title complex, (1S)-1,1'-bis{[N-ethyl-N-(1-methylethyl)-amino]carbonyl}-2- (hydroxyldiphenylmethyl)-ferrocene ([Fe(C24H22NO2)(C11H16NO)]2·H2O, Mr = 1207.13), was synthesized via (-)-Sparteine-mediated enantioselective directed ortho-lithiation of 1,1'-bis{[N- ethyl-N-(1-methylethyl)-amino]carbonyl}-2-(hydroxydiphenylmethyl)-ferrocene. The structure of the title compound was determined by X-ray single-crystal diffraction. The crystal belongs to the orthorhombic system, space group P212121, with a = 10.26...  相似文献   

13.
The amine hydrogen atoms of the cyclic trimeric silazane [Me(2)SiNH](3) are readily replaced by the H(2)Al. NMe(3) group in a simple aminolyis reaction of [Me(2)SiNH](3) with H(3)Al.NMe(3) to afford the aluminum amides (Me(2)SiNAlH(2).NMe(3))(n)(Me(2)SiNH)(3-n) (1, n = 3; 2, n = 1; 4, n = 2). The monosubstituted amide 2 could not be isolated, because it undergoes condensation to the tricyclic compound 1,1',2,2'-(HAlNMe(3))(2) (3). Contrary to these results the analogous reactions of the more flexible cyclic tetrameric silazane [Me(2)SiNH](4) with H(3)Al.NMe(3) did not give simple aluminum amides, but complicated mixtures were obtained from which the interesting polycyclic species Al(5)C(22)H(73)N(10)Si(8).C(6)H(6) (5) and Al(6)C(22)H(76)N(10)Si(8).1/4 C(6)H(14) (6) could be isolated in low yields. A key step in the formation of 5 and 6 is a low-temperature dehydrosilylation reaction which leads to cleavage of the silazane ring. Compounds 1, 3, and 4 were characterized spectroscopically ((1)H, (13)C, (27)Al NMR and FTIR) and by single crystal X-ray diffraction, whereas 5 and 6 were characterized by X-ray diffraction only. Thermolysis experiments involving 1 and 3 indicate that the onset of Al-N bond formation via dehydrosilylation is accompanied by loss of trimethylamine and formation of larger aggregates, which are stable to further silane elimination to at least 620 degrees C.  相似文献   

14.
A multicomponent synthetic strategy involving copper(II) ions, tert-butylphosphonic acid (t-BuPO(3)H(2)) and 3-substituted pyrazole ligands has been adopted for the synthesis of soluble molecular copper(II) phosphonates. The use of six different 3-substituted pyrazoles, 3-R-PzH [R = H, Me, CF(3), Ph, 2-pyridyl (2-Py), and 2-methoxyphenyl (2-MeO-C(6)H(4))] as ancillary ligands afforded nine different decanuclear cages, [Cu(5)(μ(3)-OH)(2)(O(3)P-t-Bu)(3)(3-R-Pz)(2)(X)(2)](2)·(Y) where R = H, X = t-BuPO(3)H, and Y = (Et(3)NH(+))(4)(solvent) (1); R = Me, X = 3-MePzH, and Y = solvent (2); R = Me, X = t-BuPO(3)H, and Y = (Et(3)NH(+))(4)(solvent) (3); R = CF(3), X = t-BuPO(3)H, and Y = (Et(3)NH(+))(4)(solvent) (4); R = Ph, X = 3-PhPzH, and Y = solvent (5); R = 2-Py, X = 0.5 MeOH, and Y = solvent (6); R = 2-Py, X = none, and Y = solvent (7); R = 2-Py, X = H(2)O, and Y = (Et(3)NH(+)·PF(6)(-))(2)(solvent) (8); R = 2-MeO-C(6)H(4), X = MeOH or 0.5:0.5 MeOH/H(2)O, and Y = solvent (9). Compounds 1-6, 8, and 9 were isolated using a direct synthetic method which involves the reaction of copper(II) salts and the ligands, while 7 was obtained from an indirect route involving the reaction of preformed copper-pyridylpyrazolate precursor complexes and t-BuPO(3)H(2). The decametallic compounds 1-9 possess a butterfly shaped core. The core of the cages 1, 3, and 4 are tetraanionic and contain more phosphonates than pyrazole ligands, while the other cages are neutral and contain more pyrazoles than phosphonate ligands. Compounds 1-6 have been studied by electrospray ionization-high-resolution mass spectrometry (ESI-HRMS). The decanuclear cage 6 was shown to be a good plasmid modifier.  相似文献   

15.
The molecular structures of two byproducts 1,1'-diphenyl-3',4'-dihydrodispiro[indole-2,2'-furan-5',2'-indole]-3,3'(1H, 1'H)-dione (3) and 1,5'-diphenyl-4',5'-dihydro-3'H-spiro[indole-2,2'-pyrano[3,2-b]indol]-3(1H)-one (4), which accompanied the rearrangement of 3-hydroxy-3-methyl-1-phenylquinoline-2,4(1H,3H)-dione (1) to 2-hydroxy-2-methyl-1-phenyl-1,2-dihydro-3H-indol-3-one (2), have been elucidated by NMR, MS, and X-ray diffraction.  相似文献   

16.
The reaction between B(C(6)F(5))(3) and NH(3)(g) in light petroleum yielded the solvated adduct H(3)N.B(C(6)F(5))(3).NH(3). Treatment with a second equivalent of B(C(6)F(5))(3) afforded H(3)N.B(C(6)F(5))(3). Attempts to prepare the analogous alane adduct were unsuccessful and resulted in protolysis. Related compounds of the form R'R' 'N(H).M(C(6)F(5))(3) were synthesized from M(C(6)F(5))(3) and the corresponding primary and secondary amines (M = B, Al; R' = H, Me, CH(2)Ph; R' ' = Me, CH(2)Ph, CH(Me)(Ph); R'R' ' = cyclo-C(5)H(10)). The solid-state structures of 13 new compounds have been elucidated by single-crystal X-ray diffraction and are discussed. Each of the borane adducts has a significant bifurcated intramolecular hydrogen bond between an amino hydrogen and two o-fluorines, while N-H...F-C interactions in the alane adducts are weaker and more variable. (19)F NMR studies demonstrate that the borane adducts retain the bifurcated C-F...H...F-C hydrogen bond in solution. Compounds of the type R'R' 'N(H).M(C(6)F(5))(3) conform to Etter's rules for the prediction of hydrogen-bonding interactions.  相似文献   

17.
1-Boraadamantane (1) reacts with di(1-alkynyl)silicon and -tin compounds 2 (Me2M(C...CR)2: M=Si; R=Me (a), tBu (b), SiMe3 (c); M=Sn, R=SiMe3 (e)) in a 1:1 ratio by intermolecular 1,1-alkylboration, followed by intramolecular 1,1-vinylboration, to give siloles 5a-c and the stannole 5e, respectively, in which the tricyclic 1-boraadamantane system is enlarged by two carbon atoms. Owing to the high reactivity of 1, a second fast intermolecular 1,1-alkylboration competes with the intramolecular 1,1-vinylboration as the second major step in the reaction if the substituent R at the C...C bond is small (2a) and/or if the M-C... bond is also highly reactive, as in 2d (M=Sn, R= Me) and 2e (M=Sn, R=SiMe3). This leads finally to the novel octacyclic 7-metalla-2,5-diboranorbornane derivatives 8a, 8d, and 8e, of which 8e was characterized by X-ray analysis in the solid state. 1,1,2,2-Tetramethyldi(1-propynyl)disilane, MeC...C-SiMe2SiMe2-C...CMe (3), reacts with 1 to give mainly a 1,2-dihydro-1,2,5-disilaborepine derivative 9 and the octacyclic compound 11, which is analogous to 8a but with an Me4Si2 bridge. All new products were characterized in solution by 1H, 11B, 13C, 29Si, and 119Sn NMR spectroscopy. For 8 and 11, highly resolved 29Si and 119Sn NMR spectra revealed the first two-bond isotope-induced chemical shifts, 2delta10/11B(29Si) and 2delta10/11B(119Sn) respectively, to be reported.  相似文献   

18.
The protonolysis reaction of [Ln(AlMe(4))(3)] with various substituted cyclopentadienyl derivatives HCp(R) gives access to a series of half-sandwich complexes [Ln(AlMe(4))(2)(Cp(R))]. Whereas bis(tetramethylaluminate) complexes with [1,3-(Me(3)Si)(2)C(5)H(3)] and [C(5)Me(4)SiMe(3)] ancillary ligands form easily at ambient temperature for the entire Ln(III) cation size range (Ln=Lu, Y, Sm, Nd, La), exchange with the less reactive [1,2,4-(Me(3)C)(3)C(5)H(3)] was only obtained at elevated temperatures and for the larger metal centers Sm, Nd, and La. X-ray structure analyses of seven representative complexes of the type [Ln(AlMe(4))(2)(Cp(R))] reveal a similar distinct [AlMe(4)] coordination (one eta(2), one bent eta(2)). Treatment with Me(2)AlCl leads to [AlMe(4)] --> [Cl] exchange and, depending on the Al/Ln ratio and the Cp(R) ligand, varying amounts of partially and fully exchanged products [{Ln(AlMe(4))(mu-Cl)(Cp(R))}(2)] and [{Ln(mu-Cl)(2)(Cp(R))}(n)], respectively, have been identified. Complexes [{Y(AlMe(4))(mu-Cl)(C(5)Me(4)SiMe(3))}(2)] and [{Nd(AlMe(4))(mu-Cl){1,2,4-(Me(3)C)(3)C(5)H(2)}}(2)] have been characterized by X-ray structure analysis. All of the chlorinated half-sandwich complexes are inactive in isoprene polymerization. However, activation of the complexes [Ln(AlMe(4))(2)(Cp(R))] with boron-containing cocatalysts, such as [Ph(3)C][B(C(6)F(5))(4)], [PhNMe(2)H][B(C(6)F(5))(4)], or B(C(6)F(5))(3), produces initiators for the fabrication of trans-1,4-polyisoprene. The choice of rare-earth metal cation size, Cp(R) ancillary ligand, and type of boron cocatalyst crucially affects the polymerization performance, including activity, catalyst efficiency, living character, and polymer stereoregularity. The highest stereoselectivities were observed for the precatalyst/cocatalyst systems [La(AlMe(4))(2)(C(5)Me(4)SiMe(3))]/B(C(6)F(5))(3) (trans-1,4 content: 95.6 %, M(w)/M(n)=1.26) and [La(AlMe(4))(2)(C(5)Me(5))]/B(C(6)F(5))(3) (trans-1,4 content: 99.5 %, M(w)/M(n)=1.18).  相似文献   

19.
宋玉梅  庞洁 《无机化学学报》2005,21(9):1433-1434
The crystal structure of [Mn(BDA)(bpy)2(H2O)](H2O)2 (1)(BDA=6,6′-dibromo-2,2′-dimethoxy-1,1′-binaphthylene-4,4′-disulfonate, bpy=2,2′-bipyridine) composes of a manganese center which is surrounded by two nitrogen atoms from 2,2′-bipyridine and four oxygen atoms from three water and sulfonate group of BDA that also participate in H-bonding interactions to form 3D network as well as some uncoordinated water. CCDC: 277922.  相似文献   

20.
[Sm(Tp(Me2)(2)(kappa(2)-S(2)CNR(2))] compounds (R = Et (1), Me (2); Tp(Me2) = HB(3,5-Me2pz)(3)) have been isolated from reaction of (R(2)NC(S)S)(2) with 2 equiv of [Sm(Tp(Me2)(2)]. Reductive cleavage of 2,2'-dipyridyl disulfide or 2,2'-dipyridyl diselenide by [Sm(Tp(Me2)(2)] afforded good yields of [Sm(Tp(Me2)(2)(kappa(2)-Y)] compounds (Y = 2-SC(5)H(4)N (3), 2-SeC(5)H(4)N (4)). 4 is the first selenopyridine complex of an f-block element. Sm(Tp(Me2)(2)(2-OC(5)H(4)N) (5) has been synthesized by salt metathesis of [Sm(Tp(Me2)(2)Cl] with the sodium salt of the 2-hydroxypyridine. The solid-state structures of 1, 3, 4, and 5 were determined by single-crystal X-ray diffraction analysis and revealed that the compounds are all eight-coordinate with dodecahedral geometry. The samarium atoms are bound in tridentate fashion to two pyrazolylborate ligands and in bidentate fashion by the third ligand. The solution behavior of the compounds was studied by (1)H NMR techniques. (1)H-(1)H exchange spectroscopy experiments give evidence for two distinct dynamic regimes occurring in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号