首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-planar solid-fluid-solid interfaces under stress are very common in many industrial and natural materials. For example, in the Earth’s crust, many rough and wavy interfaces can be observed in rocks in a wide range of spatial scales, from undulate grain boundaries at the micrometer scale, to stylolite dissolution planes at the meter scale. It is proposed here that these initially flat solid-fluid-solid interfaces become rough by a morphological instability triggered by elastic stress. A model for the formation of these unstable patterns at all scales is thus presented. It is shown that such instability is inherently present due to the uniaxial stress that promotes them, owing to the gain in the total elastic energy: the intrinsic elastic energy plus the work of the external forces. This is shown explicitly by solving the elastic problem in a linear stability analysis, and proved more generally without having resort to the computation of the elastic field.  相似文献   

2.
The acoustic emission of fracture precursors, and the failure time of samples of heterogeneous materials (wood, fiberglass) are studied as a function of the load features and geometry. It is shown that in these materials the failure time is predicted with a good accuracy by a model of microcrack nucleation proposed by Pomeau. We find that the time interval δt between events (precursors) and the energy ɛ are power law distributed and that the exponents of these power laws depend on the load history and on the material. In contrast, the cumulated acoustic energy E presents a critical divergency near the breaking time τ which is E∼ . The positive exponent γ is independent, within error bars, on all the experimental parameters. Received 31 July 2001 and Received in final form 17 December 2001  相似文献   

3.
Bulk strain energy density was numerically simulated for epoxy-phenol-based composites randomly reinforced with short polyimide fibers, with antifriction dispersed polytetrafluoroethylene (PTFE) additives. A mathematical model was constructed using the notion of a stress concentration operator (fourth-rank tensor) that relates volume averaged, or external, stresses within a heterogeneous material with their local values within an individual heterogeneity. The simulation was based on a generalized singular approximation of random field theory used to solve a stochastic differential equation of equilibrium of an elastic medium. This approximation yields an explicit expression for stress concentration in a composite material. The explicit expression allows one to analyze the distribution of bulk strain energy density depending on the composition, structure, volume and mass fraction of heterogeneities, and on the type and value of applied load. We studied how the considered energy characteristic depends on the type of external mechanical loading and concentration of isotropic components in the model composites. It is shown that with the increasing concentration of polyimide fibers at a fixed concentration of PTFE inclusions, the bulk strain energy density values of all components decrease and approach each other independently of the type of external loading. The form of these dependences is nonlinear. A change in the mass fraction of dispersed PTFE inclusions in the model composites exerts little effect on local energy values of all components under any of the considered applied external loads.  相似文献   

4.
Specific heat versus temperature curves for various pressures, or magnetic fields (or some other external control parameter) have been seen to cross at a point or in a very small range of temperatures in many correlated fermion systems. We show that this behavior is related to the possibility of existence of a quantum critical point. Vicinity to a quantum critical point in these systems leads to a crossover from quantum to classical fluctuation regime at some temperature . The temperature at which the curves cross turns out to be near this crossover temperature. We have discussed the case of the normal phase of liquid Helium three and the heavy fermion systems CeAl3 and UBe13 in detail within the spin fluctuation theory, a theory which inherently contains a low energy scale which can be identified with . When the crossover scale is a homogeneous function of these control parameters there is always crossing at a point. We also mention other theories exhibiting a low energy scale near a quantum critical point and discuss this phenomenon in those theories. Received 25 June 1999  相似文献   

5.
We propose a phenomenological model of boundary lubricated junctions consisting of a few layers of small molecules which describes the rheological properties of these sytems both in the static, frozen, and sliding, molten, states as well as the dynamical transition between them. Two dynamical regimes can be distinguished, according to the level of internal damping of the junction, which depends on its thickness and on the normal load. In the overdamped regime, under driving at constant velocity v through an external spring, the motion evolves continuously from “atomic stick-slip” to modulated sliding. Underdamped systems exhibit, under given external stress, a range of dynamic bistability where the sheared static state coexists with a steadily sliding one. The frictional dynamics under shear driving is analyzed in detail, it provides a complete account of the qualitative dynamical scenarios observed by Israelashvili et al., and yields semiquantitative agreement with experimental data. A few complementary experimental tests of the model are suggested. Received: 18 December 1997 / Received in final form and accepted: 26 March 1998  相似文献   

6.
陈敏  汪俊  侯氢 《物理学报》2009,58(2):1149-1153
采用分子动力学(molecular dynamics,MD)方法研究了不同压力下氦-空位复合物的大小、氦含量对材料肿胀、稳定性的影响. 分析了影响材料体积改变及稳定性因素:随着氦含量的增加,体系内聚能减小,系统体积膨胀,稳定性降低;当氦-空位复合物较小时,随着氦-空位复合物的增大,体系内聚能增加,系统体胀减小,体系趋于稳定. 当氦泡中氦原子达到一定数量时氦泡不再继续长大. 关键词: 体胀 氦-空位复合物 钛 分子动力学  相似文献   

7.
We discuss several elastic energies for nematic elastomers and their small strain expansions both in the regime of large director rotations, and in the case that director changes are small. We propose two fully non-linear model anisotropic energies and compare the behavior they predict with the currently available experimental evidence.  相似文献   

8.
CuCl nanocrystals in crystalline alkali-halide matrices have been investigated under hydrostatic pressures up to 18 GPa. The pressures of structural phase transitions in CuCl have been determined both for different nanocrystal sizes and for different matrices (NaCl, LiCl, KCl). For CuCl nanocrystals in NaCl an increase of the transition pressure with decreasing nanocrystal size is observed, which is explained by the increasing importance of surface pressure for small nanocrystals. We found higher transition pressures for the LiCl matrix than for the NaCl matrix. The reason for this is that the pressure which acts on the nanocrystal differs from the external pressure. A simple elastic model describes the effective pressure transmitted from the matrix to the nanocrystal. With CuCl nanocrystals embedded in KCl we have studied the behavior of nanocrystals during a phase transition of the matrix. Additionally we have determined the pressure coefficients of the exciton energies of the CuCl nanocrystals, which depend on the elastic properties of the matrix. Received 4 March 1999  相似文献   

9.
This paper reports the result of investigation into the morphological evolution and migration of void in bi-piezoelectric material interface by utilizing nonlocal phase field model and finite element method (FEM), where the small scale effect containing the long-range forces among atoms is considered. The nonlocal elastic strain energy and the nonlocal electric energy around the void are firstly calculated by the finite element method. Then based on the finite difference method (FDM), the thermodynamic equilibrium equation containing the surface energy and anisotropic diffusivity is solved to simulate the morphological evolution and migration of elliptical void in bi-piezoelectric films interface. Results show that the way of load condition plays a significant role in the evolution process, and the boundary of void's long axis gradually collapses toward the center of ellipse. In addition, the evolutionary speed of left boundary gradually decreases with scale effect coefficient growth. This work can provide references for the safety evaluation of piezoelectric materials in micro electro mechanical system.  相似文献   

10.
M2AlC phases, where M is a transition metal, are layered ternary compounds that possess unusual properties. In this paper, we have calculated the elastic properties of M2AlC, with M=Ti, V, Cr, Nb and Ta, by means of ab initio total energy calculations using the projector augmented-wave method. We have derived the bulk and shear moduli, Young's moduli and Poisson's ratio for ideal polycrystalline M2AlC aggregates. We have estimated the elastic modulus of Cr2AlC with 357.7 GPa while the values of all other phases are in the range 309±10 GPa. We suggest that this can be understood based on the calculated bond energies for the M-C bonds. Furthermore, our results indicate a profound elastic anisotropy of M2AlC even compared to materials with a well-established anisotropic character such as α-alumina. Finally, we have estimated the Debye temperatures of M2AlC from the average sound velocity.  相似文献   

11.
Deformation of a spherical shell adhering onto a rigid substrate due to van der Waals attractive interaction is investigated by means of numerical minimization (conjugate gradient method) of the sum of the elastic and adhesion energies. The conformation of the deformed shell is governed by two dimensionless parameters, i.e., Cs/epsilon and Cb/epsilon where Cs and Cb are respectively the stretching and the bending constants, and epsilon is the depth of the van der Waals potential between the shell and substrate. Four different regimes of deformation are characterized as these parameters are systematically varied: (i) small deformation regime, (ii) disk formation regime, (iii) isotropic buckling regime, and (iv) anisotropic buckling regime. By measuring the various quantities of the deformed shells, we find that both discontinuous and continuous bucking transitions occur for large and small Cs/epsilon, respectively. This behavior of the buckling transition is analogous to van der Waals liquids or gels, and we have numerically determined the associated critical point. Scaling arguments are employed to explain the adhesion induced buckling transition, i.e., from the disk formation regime to the isotropic buckling regime. We show that the buckling transition takes place when the indentation length exceeds the effective shell thickness which is determined from the elastic constants. This prediction is in good agreement with our numerical results. Moreover, the ratio between the indentation length and its thickness at the transition point provides a constant number (2–3) independent of the shell size. This universal number is observed in various experimental systems ranging from nanoscale to macroscale. In particular, our results agree well with the recent compression experiment using microcapsules.  相似文献   

12.
A newly developed method for determining the frequency-dependent complex Young's modulus was employed to analyze the mechanical response of compacted microcrystalline cellulose, sorbitol, ethyl cellulose and starch for frequencies up to 20 kHz. A Debye-like relaxation was observed in all the studied pharmaceutical excipient materials and a comparison with corresponding dielectric spectroscopy data was made. The location in frequency of the relaxation peak was shown to correlate to the measured tensile strength of the tablets, and the relaxation was interpreted as the vibrational response of the interparticle hydrogen and van der Waals bindings in the tablets. Further, the measured relaxation strength, holding information about the energy loss involved in the relaxation processes, showed that the weakest material in terms of tensile strength, starch, is the material among the four tested ones that is able to absorb the most energy within its structure when exposed to external perturbations inducing vibrations in the studied frequency range. The results indicate that mechanical relaxation analysis performed over relatively broad frequency ranges should be useful for predicting material properties of importance for the functionality of a material in applications such as, e.g., drug delivery, drug storage and handling, and also for clarifying the origin of hitherto unexplained molecular processes.  相似文献   

13.
冲击荷载下颗粒物质缓冲性能的试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
季顺迎  李鹏飞  陈晓东 《物理学报》2012,61(18):184703-184703
颗粒物质是一种复杂的能量耗散体系. 颗粒间的摩擦和黏滞作用可使冲击荷载引起的能量有效衰减, 颗粒间的力链结构又可将瞬时局部冲击荷载进行空间扩展和时间延长, 达到良好的缓冲效果. 为研究颗粒物质对冲击荷载的缓冲性能, 本文采用重力作用下球体冲击筒内颗粒物质的试验系统, 研究了筒体底部作用力在颗粒材料、颗粒厚度等因素影响下的变化规律. 试验结果表明: 非规则颗粒具有更加良好的缓冲性能, 粗颗粒的缓冲性能略高于细颗粒. 颗粒厚度H是影响缓冲性能的重要因素, 并存在一个临界厚度Hc. 当H<Hc时, 缓冲性能随H的增加而增强; 当H>Hc时, H对缓冲效果的影响不再显著. 以上研究是在同一冲击能量下进行的, 而对于不同冲击能量下的Hc还需要深入开展. 通过颗粒物质对冲击荷载缓冲性能的试验研究, 可揭示颗粒材料的基本物理力学行为, 为其在缓冲减振领域中的应用提供依据.  相似文献   

14.
The structure of our material world is characterized by a large hierarchy of length scales that determines material properties and functions. Increasing spatial resolution in optical imaging and spectroscopy has been a long standing desire, to provide access, in particular, to mesoscopic phenomena associated with phase separation, order, and intrinsic and extrinsic structural inhomogeneities. A general concept for the combination of optical spectroscopy with scanning probe microscopy emerged recently, extending the spatial resolution of optical imaging far beyond the diffraction limit. The optical antenna properties of a scanning probe tip and the local near-field coupling between its apex and a sample provide few-nanometer optical spatial resolution. With imaging mechanisms largely independent of wavelength, this concept is compatible with essentially any form of optical spectroscopy, including nonlinear and ultrafast techniques, over a wide frequency range from the terahertz to the extreme ultraviolet. The past 10 years have seen a rapid development of this nano-optical imaging technique, known as tip-enhanced or scattering-scanning near-field optical microscopy (s-SNOM). Its applicability has been demonstrated for the nano-scale investigation of a wide range of materials including biomolecular, polymer, plasmonic, semiconductor, and dielectric systems.

We provide a general review of the development, fundamental imaging mechanisms, and different implementations of s-SNOM, and discuss its potential for providing nanoscale spectroscopic including femtosecond spatio-temporal information. We discuss possible near-field spectroscopic implementations, with contrast based on the metallic infrared Drude response, nano-scale impedance, infrared and Raman vibrational spectroscopy, phonon Raman nano-crystallography, and nonlinear optics to identify nanoscale phase separation (PS), strain, and ferroic order. With regard to applications, we focus on correlated and low-dimensional materials as examples that benefit, in particular, from the unique applicability of s-SNOM under variable and cryogenic temperatures, nearly arbitrary atmospheric conditions, controlled sample strain, and large electric and magnetic fields and currents. For example, in transition metal oxides, topological insulators, and graphene, unusual electronic, optical, magnetic, or mechanical properties emerge, such as colossal magneto-resistance (CMR), metal–insulator transitions (MITs), high-T C superconductivity, multiferroicity, and plasmon and phonon polaritons, with associated rich phase diagrams that are typically very sensitive to the above conditions. The interaction of charge, spin, orbital, and lattice degrees of freedom in correlated electron materials leads to frustration and degenerate ground states, with spatial PS over many orders of length scale. We discuss how the optical near-field response in s-SNOM allows for the systematic real space probing of multiple order parameters simultaneously under a wide range of internal and external stimuli (strain, magnetic field, photo-doping, etc.) by coupling directly to electronic, spin, phonon, optical, and polariton resonances in materials. In conclusion, we provide a perspective on the future extension of s-SNOM for multi-modal imaging with simultaneous nanometer spatial and femtosecond temporal resolution.  相似文献   

15.
An understanding of the mechanical response of modern engineering alloys to complex loading conditions is essential for the design of load‐bearing components in high‐performance safety‐critical aerospace applications. A detailed knowledge of how material behaviour is modified by fatigue and the ability to predict failure reliably are vital for enhanced component performance. Unlike macroscopic bulk properties (e.g. stiffness, yield stress, etc.) that depend on the average behaviour of many grains, material failure is governed by `weakest link'‐type mechanisms. It is strongly dependent on the anisotropic single‐crystal elastic–plastic behaviour, local morphology and microstructure, and grain‐to‐grain interactions. For the development and validation of models that capture these complex phenomena, the ability to probe deformation behaviour at the micro‐scale is key. The diffraction of highly penetrating synchrotron X‐rays is well suited to this purpose and micro‐beam Laue diffraction is a particularly powerful tool that has emerged in recent years. Typically it uses photon energies of 5–25 keV, limiting penetration into the material, so that only thin samples or near‐surface regions can be studied. In this paper the development of high‐energy transmission Laue (HETL) micro‐beam X‐ray diffraction is described, extending the micro‐beam Laue technique to significantly higher photon energies (50–150 keV). It allows the probing of thicker sample sections, with the potential for grain‐level characterization of real engineering components. The new HETL technique is used to study the deformation behaviour of individual grains in a large‐grained polycrystalline nickel sample during in situ tensile loading. Refinement of the Laue diffraction patterns yields lattice orientations and qualitative information about elastic strains. After deformation, bands of high lattice misorientation can be identified in the sample. Orientation spread within individual scattering volumes is studied using a pattern‐matching approach. The results highlight the inability of a simple Schmid‐factor model to capture the behaviour of individual grains and illustrate the need for complementary mechanical modelling.  相似文献   

16.
We investigate the competition between magnetic order and local Kondo effect in a Kondo lattice model (i.e. the Coqblin-Schrieffer Hamiltonian extended to a lattice) in a mean-field approximation, taking account of the spin-orbit degeneracy of each localized f level. This leads to the definition of a dependent Kondo temperature. We study the Kondo phase and compare its energy with the energies of magnetic phases, when the number of the conduction band electron per site is near one. We present a phase diagram which shows the occurrence of three phases: Kondo, antiferromagnetic and paramagnetic phases. Our model in the mean-field approximation also shows a somewhat flat Kondo temperature, for large values of , as a function of the exchange coupling J between conduction and localized f electrons. Finally we show some scaling effects between and J and we define a corresponding Kondo temperature. Received 21 September 1998 and Received in final form 8 February 1999  相似文献   

17.
This paper presents an analytical solution for the elastic fields induced by non-elastic eigenstrains in a plane elliptical inhomogeneity embedded in the orthotropic matrix under tension at infinity and inclined at any angle. The conformal transformation and complex function method for the anisotropic elastic material were used to determine the strain energies in the inhomogeneity and matrix, which were expressed by four undetermined coefficients characterizing the equilibrium boundary of the inhomogeneity due to the acting eigenstrains and external load. The use of the principle of the minimum potential energy led to analytical expressions for these coefficients and thus generated a closed-form solution for the elastic strain/stress fields. The resulting stress field in the inhomogeneity was examined and verified by checking the continuity conditions for the normal and shear stresses on the interior boundary of the matrix. Supported by the Program for New Century Excellent Talents in Universities (NCET) of the Ministry of Education of China (Grant No. NCET-04-0373) and the Program for Shanghai Pujiang Talents (Grant No. 05PJ14092)  相似文献   

18.
Different sets of metastable states can be reached in glassy systems below some transition temperature depending on initial conditions and details of the dynamics. This is investigated for the Sherrington-Kirkpatrick spin glass model with long ranged interactions. In particular, the time dependent local field distribution and energy are calculated for zero temperature. This is done for a system quenched to zero temperature, slow cooling or simulated annealing, a greedy algorithm and repeated tapping. Results are obtained from Monte-Carlo simulations and a Master-Fokker-Planck approach. A comparison with replica symmetry broken theory, evaluated in high orders, shows that the energies obtained via dynamics are higher than the ground state energy of replica theory. Tapping and simulated annealing yield on the other hand results which are very close to the ground state energy. The local field distribution tends to zero for small fields. This is in contrast to the Edwards flat measure hypothesis. The distribution of energies obtained for different tapping strengths does again not follow the canonical form proposed by Edwards.  相似文献   

19.
This study presents an analytical approach for buckling analysis and smart control of a single layer graphene sheet (SLGS) using a coupled polyvinylidene fluoride (PVDF) nanoplate. The SLGS and PVDF nanoplate are considered to be coupled by an enclosing elastic medium which is simulated by the Pasternak foundation. The PVDF nanoplate is subjected to an applied voltage in the thickness direction which operates in control of critical load of the SLGS. In order to satisfy the Maxwell equation, electric potential distribution is assumed as a combination of a half-cosine and linear variation. The exact analysis is performed for the case when all four ends are simply supported and free electrical boundary condition. Adopting the nonlocal Mindlin plate theory, the governing equations are derived based on the energy method and Hamilton's principle. A detailed parametric study is conducted to elucidate the influences of the small scale coefficient, stiffness of the internal elastic medium, graphene length, mode number and external electric voltage on the buckling smart control of the SLGS. The results depict that the imposed external voltage is an effective controlling parameter for buckling of the SLGS. This study might be useful for the design and smart control of nano-devices.  相似文献   

20.
The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic‐scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically for in situ high‐energy X‐ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X‐ray path while implementing low‐Z cell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X‐ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high‐energy X‐ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic‐scale structural analysis. As an example, clear structural changes in LiCoO2 under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2 diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号