首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nucleophilic addition of amidoximes R'C(NH(2))═NOH [R' = Me (2.Me), Ph (2.Ph)] to coordinated nitriles in the platinum(II) complexes trans-[PtCl(2)(RCN)(2)] [R = Et (1t.Et), Ph (1t.Ph), NMe(2) (1t.NMe(2))] and cis-[PtCl(2)(RCN)(2)] [R = Et (1c.Et), Ph (1c.Ph), NMe(2) (1c.NMe(2))] proceeds in a 1:1 molar ratio and leads to the monoaddition products trans-[PtCl(RCN){HN═C(R)ONC(R')NH(2)}]Cl [R = NMe(2); R' = Me ([3a]Cl), Ph ([3b]Cl)], cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}] [R = NMe(2); R' = Me (4a), Ph (4b)], and trans/cis-[PtCl(2)(RCN){HN═C(R)ONC(R')NH(2)}] [R = Et; R' = Me (5a, 6a), Ph (5b, 6b); R = Ph; R' = Me (5c, 6c), Ph (5d, 6d), correspondingly]. If the nucleophilic addition proceeds in a 2:1 molar ratio, the reaction gives the bisaddition species trans/cis-[Pt{HN═C(R)ONC(R')NH(2)}(2)]Cl(2) [R = NMe(2); R' = Me ([7a]Cl(2), [8a]Cl(2)), Ph ([7b]Cl(2), [8b]Cl(2))] and trans/cis-[PtCl(2){HN═C(R)ONC(R')NH(2)}(2)] [R = Et; R' = Me (10a), Ph (9b, 10b); R = Ph; R' = Me (9c, 10c), Ph (9d, 10d), respectively]. The reaction of 1 equiv of the corresponding amidoxime and each of [3a]Cl, [3b]Cl, 5b-5d, and 6a-6d leads to [7a]Cl(2), [7b]Cl(2), 9b-9d, and 10a-10d. Open-chain bisaddition species 9b-9d and 10a-10d were transformed to corresponding chelated bisaddition complexes [7d](2+)-[7f](2+) and [8c](2+)-[8f](2+) by the addition of 2 equiv AgNO(3). All of the complexes synthesized bear nitrogen-bound O-iminoacylated amidoxime groups. The obtained complexes were characterized by elemental analyses, high-resolution ESI-MS, IR, and (1)H NMR techniques, while 4a, 4b, 5b, 6d, [7b](Cl)(2), [7d](SO(3)CF(3))(2), [8b](Cl)(2), [8f](NO(3))(2), 9b, and 10b were also characterized by single-crystal X-ray diffraction.  相似文献   

2.
Treatment of ThCl(4)(DME)(2) or UCl(4) with 1 equiv of dilithiumbis(iminophosphorano) methandiide, [Li(2)C(Ph(2)P═NSiMe(3))(2)] (1), afforded the chloro actinide carbene complexes [Cl(2)M(C(Ph(2)P═NSiMe(3))(2))] (2 (M = Th) and 3 (M = U)) in situ. Stable PCP metal-carbene complexes [Cp(2)Th(C(Ph(2)P═NSiMe(3))(2))] (4), [Cp(2)U(C(Ph(2)P═NSiMe(3))(2))] (5), [TpTh(C(Ph(2)P═NSiMe(3))(2))Cl] (6), and [TpU(C(Ph(2)P═NSiMe(3))(2))Cl] (7) were generated from 2 or 3 by further reaction with 2 equiv of thallium(I) cyclopentadienide (CpTl) in THF to yield 4 or 5 or with 1 equiv of potassium hydrotris(pyrazol-1-yl) borate (TpK) also in THF to give 6 or 7, respectively. The derivative complexes were isolated, and their crystal structures were determined by X-ray diffraction. All of these U (or Th)-carbene complexes (4-7) possess a very short M (Th or U)═carbene bond with evidence for multiple bond character. Gaussian 03 DFT calculations indicate that the M═C double bond is constructed by interaction of the 5f and 6d orbitals of the actinide metal with carbene 2p orbitals of both π and σ character. Complex 3 reacted with acetonitrile or benzonitrile to cyclo-add C≡N to the U═carbon double bond, thereby forming a new C-C bond in a new chelated quadridentate ligand in the bridged dimetallic complexes (9 and 10). A single carbon-U bond is retained. The newly coordinated uranium complex dimerizes with one equivalent of unconverted 3 using two chlorides and the newly formed imine derived from the nitrile as three connecting bridges. In addition, a new crystal structure of [CpUCl(3)(THF)(2)] (8) was determined by X-ray diffraction.  相似文献   

3.
The derivatives of 4-hydroxy-5,6,7,8-tetrafluorocoumarin in reactions witho-aminothiophenol yield products of S-substitution at C7 atom, 7-substituted 5,6,8-trifluorocoumarins afford benzothiazoles as a result of cleavage of the pyrone cycle, 2-methyl-3-ethoxycarbonyl-5,6,7,8-tetrafluorochromone undergoes acidic cleavage to 2-(2-hydroxy-3,4,5,6-tetrafluorophenyl)benzothiazole. S-Substituted coumarins in alkaline media suffer decomposition to acetophenone. In acidic media 3-iminoacetyl-4-hydroxy-5,6,8-trifluoro-7-(2-aminophenylthio)coumarin affords 2-methyl-5,6,8-trifluoro-7-(2-aminophenylthio)chromone. In condensation of 4-hydroxy-5,6,8-trifluoro-7-(2-aminophenylthio)coumarin in the presence of NaH was isolated 4-hydroxy-5,6-difluoro-2H-pyrano[6,5-a]phenothiazin2-one.  相似文献   

4.
The heating of the 18-electron complex [3,3-(dppb)-3-H-3-Cl-closo-3,1,2-RuC(2)B(9)H(11)] (3) in benzene at 80 °C in the presence of a small amount of CCl(4) as initiator afforded paramagnetic 17-electron species [3,3-(dppb)-3-Cl-closo-3,1,2-RuC(2)B(9)H(11)] (4) along with minor amounts of two P-phenylene ortho-cycloboronated derivatives [3-Cl-3,3,8-{Ph(2)P(CH(2))(4)PPh-μ-(C(6)H(4)-ortho)}-closo-3,1,2-RuC(2)B(9)H(10)] (5) and [3,7-Cl(2)-3,3,8-{Ph(2)P(CH(2))(4)PPh-μ-(C(6)H(4)-ortho)}-closo-3,1,2-RuC(2)B(9)H(10)] (6) in total yield of ca. 80%. The heating of either 3 or 4 in toluene at 95 °C in the absence of CCl(4) led to the selective formation of 5, which was isolated in 64% and 46% yield, respectively. Thermolysis of 3 at higher temperatures (boiling toluene, 110 °C) gives novel paramagnetic species [3-Cl-3,3,7,8-{Ph(2)P(CH(2))(4)P-μ-(C(6)H(4)-ortho)(2)}-closo-3,1,2-RuC(2)B(9)H(9)] (7) featuring bis(ortho-cycloboronation) of both P-phenyl groups at the same phosphorus atom of the ruthenium-bound dppb ligand. All new paramagnetic complexes 4-7, as well as starting diamagnetic species 3, were characterized by single-crystal X-ray diffraction and, in addition, by EPR spectroscopic studies of odd-electron complexes. Ruthenacarboranes 3-5 and 7 all display high efficiency as catalysts for the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). Complex 5 gave the best catalyst performance in terms of polydispersity; the PDI (M(w)/M(n)) of the polymer samples is as low as 1.15.  相似文献   

5.
Tan G  Zhu H 《Inorganic chemistry》2011,50(15):6979-6986
The dinuclear NNP-ligand copper(I) complex [o-N═CH(C(4)H(3)N)-PPh(2)C(6)H(4)](2)Cu(2) (1) has been synthesized by the reaction of (CuMes)(4) (Mes = 2,4,6-Me(3)C(6)H(2)) with N-((1H-pyrrol-2-yl)-methylene)-2-(diphenylphosphino)benzenamine under an elimination of MesH. Further reaction of 1 with an excess of S(8) produced a mononuclear Cu(II) complex [o-N═CH(C(4)H(3)N)-P(S)Ph(2)C(6)H(4)](2)Cu (5) and CuS. CuS was identified by Raman spectroscopy and 1 and 5 were clearly confirmed by X-ray crystallography. The N-heterocyclic carbene was employed to react with 1 to give a mononuclear [o-N═CH(C(4)H(3)N)-PPh(2)C(6)H(4)]Cu{C[N(iPr)CMe](2)} (2). The reactions of 2 were carried out with (1)/(8), (2)/(8), and (5)/(8) equiv of S(8), leading to compounds [o-N═CH(C(4)H(3)N)-P(S)Ph(2)C(6)H(4)]Cu{C[N(iPr)CMe](2)} (3), [o-N═CH(C(4)H(3)N)-P(S)Ph(2)C(6)H(4)]Cu (4), and 5 respectively, in which CuS was generated in the third reaction and S═C[N(iPr)CMe](2) in the latter two reactions. The clean confirmation of 2-4 demonstrates a stepwise reaction process of 1 with S(8) to 5 and CuS and the N-heterocyclic carbene acts well as a trapping agent.  相似文献   

6.
The reaction of the functional diphosphine 1 [1 = 2-(bis(diphenylphosphino)methyl-oxazoline] with [PtCl(2)(NCPh)(2)] or [PdCl(2)(NCPh)(2)], in the presence of excess NEt(3), affords [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pt(1(-H)-P,P)(2)], 3a) and [Pd{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}(2)] ([Pd(1(-H)-P,P)(2)], 3b), respectively, in which 1(-H) is (oxazoline-2-yl)bis(diphenylphosphino)methanide. The reaction of 3b with 2 equiv of [AuCl(tht)] (tht = tetrahydrothiophene) afforded [Pd(1(-H)-P,N)(2)(AuCl)(2)] (4), as a result of the opening of the four-membered metal chelate since ligand 1(-H), which was P,P-chelating in 3b, behaves as a P,N-chelate toward the Pd(II) center in 4 and coordinates to Au(I) through the other P donor. In the absence of a base, the reaction of ligand 1 with [PtCl(2)(NCPh)(2)] in MeCN or CH(2)Cl(2) afforded the isomers [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}(2)]Cl(2) ([Pt(1'-P,P)(2)]Cl(2) (5), 1' = 2-(bis(diphenylphosphino)methylene)-oxazolidine) and [Pt{(Ph(2)P)(2)C═C(OCH(2)CH(2)NH)}{Ph(2)PCH═C(OCH(2)CH(2)N(PPh(2))}]Cl(2) ([Pt(1'-P,P)(2'-P,P)]Cl(2) (6), 2' = (E)-3-(diphenylphosphino)-2-((diphenylphosphino)methylene)oxazolidine]. The P,P-chelating ligands in 5 result from a tautomeric shift of the C-H proton of 1 to the nitrogen atom, whereas the formation of one of the P,P-chelates in 6 involves a carbon to nitrogen phosphoryl migration. The reaction of 5 and 6 with a base occurred by deprotonation at the nitrogen to afford 3a and [Pt{(Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PCH═COCH(2)CH(2)N(PPh(2))}]Cl ([Pt(1(-H)-P,P)(2'-P,P)]Cl (7)], respectively. In CH(2)Cl(2), an isomer of 3a, [Pt{Ph(2)P)(2)C···C(···NCH(2)CH(2)O)}{Ph(2)PC(PPh(2))═COCH(2)CH(2)N}] ([Pt(1(-H)-P,P)(1(-H)-P,N)] (8)), was obtained as a side product which contains ligand 1(-H) in two different coordination modes. Complexes 3b·4CH(2)Cl(2), 4·CHCl(3), 6·2.5CH(2)Cl(2), and 8·CH(2)Cl(2) have been structurally characterized by X-ray diffraction.  相似文献   

7.
The 4,5-bis(diphenylphosphoranyl)-1,2,3-triazole [4,5-(P(E)Ph2)2tz] derivatives of indium {kappa3-N,N',E-[4,5-(P(E)Ph2)2(mu-tz)]InMe2}2 (E = O2, S3, Se4) were prepared in good yield. In addition, compound 5 (E = O, E' = Se) was obtained from 4 through the replacement of a selenium atom in the P-Se(In) moiety by an oxygen atom, giving the mixed-chalcogen complex. The crystal structures of 2 and 5 exhibit a central C4In2N6O2P4core with an almost planar arrangement (mean deviation = 0.019 and 0.042 A for 2 and 0.100 A for 5), while the C4In2N6S2P4 core in 3 is nonplanar (mean deviation = 0.223 A).  相似文献   

8.
5,6,7,8-Tetrafluoro-4-hydroxy-2H-chromen-2-one reacts with methylamine to give methylammonium 5,6,7,8-tetrafluoro-2-oxo-2H-chromen-4-olate, regardless of the solvent. The reaction of 3-acetyl-5,6,7,8-tetrafluoro-4-hydroxy-2H-chromen-2-one with the same amine in ethanol or acetonitrile leads to the formation of methylammonium 3-acetyl-5,6,7,8-tetrafluoro-2-oxo-2H-chromen-4-olate, while in dimethyl sulfoxide 5,6,8-trifluoro-7-methylamino-3-(1-methylaminoethylidene)-3,4-dihydro-2H-chromene-2,4-dione is formed. The latter is also formed in the reaction of 5,6,7,8-tetrafluoro-4-hydroxy-3-(1-iminoethyl)-2H-chromen-2-one with methylamine in DMSO, whereas in ethanol and acetonitrile 5,6,7,8-tetrafluoro-3-(1-methylaminoethylidene)-3,4-dihydro-2H-chromene-2,4-dione is obtained. 5,6,7,8-Tetrafluoro-3-(1-methylaminoethylidene)-3,4-dihydro-2H-chromene-2,4-dione reacts with methylamine, yielding 7-mono-or 5,7-bis(methylamino)-substituted derivatives.  相似文献   

9.
Oxidation of tin(IV) o-amidophenolate complexes [Sn(ap)Ph(2)] (1) and [Sn(ap)Et(2)(thf)] (2) (ap=dianion of 4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-iminobenzoquinone (ImQ)) with molecular oxygen and sulfur in toluene solutions was investigated. The reaction of oxygen with 1 at room temperature forms a paramagnetic derivative [Sn(isq)(2)Ph(2)] (3) (isq=radical anion of ImQ) and diphenyltin(IV) oxide [{Ph(2)SnO}(n)]. Interaction of 1 with sulfur gives another monophenyl-substituted paramagnetic tin(IV) complex, [Sn(ap)(isq)Ph] (4), and the sulfide, [Ph(3)Sn](2)S. The oxidation of 2 with oxygen and with sulfur proceeds through the derivative [Sn(isq)(2)Et(2)] (7), which undergoes alkyl elimination to give two new tin(IV) compounds, [Sn(ap)(isq)Et] (5) and [Sn(ap)(EtImQ)Et] (6) (EtImQ=2,4-di-tert-butyl-6-(2,6-diisopropylphenylimino)-3-ethylcyclohexa-1,4-dienolate ligand), respectively, along with the corresponding alkyltin(IV) oxide and sulfide. Complexes 3-5 and 7 were studied by EPR spectroscopy. The structures of 3, 4 and 6 were investigated by X-ray analysis.  相似文献   

10.
The complexation of V(IV)O(2+) ion with 10 picolinate and quinolinate derivatives, provided with the donor set (N, COO(-)), was studied in aqueous solution and in the solid state through the combined application of potentiometric (pH-titrations), spectroscopic (EPR, UV/vis and IR spectroscopy), and computational (density functional theory (DFT) calculations) methods. Such derivatives, that form potent insulin-enhancing V(IV)O(2+) compounds, are picolinic (picH), 6-methylpicolinic (6-mepicH), 3-methylpicolinic (3-mepicH), 5-butylpicolinic or fusaric (fusarH), 6-methyl-2,3-pyridindicarboxylic (6-me-2,3-pdcH(2)), 2-pyridylacetic (2-pyacH), 2-quinolinecarboxylic or quinaldic (quinH), 4-hydroxyquinoline-2-carboxylic or kynurenic (kynurH), 1-isoquinolinecarboxylic (1-iqcH) and 3-isoquinolinecarboxylic (3-iqcH) acid. On the basis of the potentiometric, spectroscopic, and DFT results, they were divided into the classes A, B, and C. The ligands belonging to class A (3-mepicH, 1-iqcH, 2-pyacH) form square pyramidal complexes in aqueous solution and in the solid state, and those belonging to class B (picH, fusarH, 3-iqcH) form cis-octahedral species, in which the two ligands adopt an (equatorial-equatorial) and an (equatorial-axial) arrangement and one water molecule occupies an equatorial site in cis position with respect to the V═O bond. Class C ligands (6-mepicH, 6-me-2,3-pdcH(2), quinH, kynurH) yield bis chelated species, that in water are in equilibrium between the square pyramidal and trans-octahedral form, where both the ligand molecules adopt an (equatorial-equatorial) arrangement and one water is in trans position with respect to the V═O group. The trans-octahedral compounds are characterized by an anomalous electron paramagnetic resonance (EPR) response, with A(z) value being reduced by about 10% with respect to the prediction of the "additivity rule". DFT methods allow to calculate the structure, (51)V hyperfine coupling constant (A(z)), the stretching frequency of V═O bond (ν(V═O)), the relative stability in aqueous solution, and the electronic structure and molecular orbital composition of bis chelated complexes. The results were used to explain the biotransformation of these potent insulin-enhancing compounds in blood serum.  相似文献   

11.
The tetrahydroborate OsH(η(2)-H(2)BH(2))(CO)(P(i)Pr(3))(2) (1) reacts with aniline and p-toluidine to give the aminoboryl derivatives [chemical structure: see text] (R = H (2), CH(3) (3)) and four H(2) molecules. Treatment of 2 and 3 with phenylacetylene gives Os{B(NHC(6)H(4)R)(2)}(C≡CPh)(CO)(P(i)Pr(3))(2) (R = H (4), CH(3) (5)), which react with HBF(4) to afford the amino(fluoro)boryl species Os{BF(NHC(6)H(4)R)}(C≡CPh)(CO)(P(i)Pr(3))(2) (R = H (6), CH(3) (7)). In contrast to HBF(4), the addition of acetic acid to 4 and 5 induces the release of phenylacetylene and the formation of the six-coordinate derivatives Os{B(NHC(6)H(4)R)(2)}(κ(2)-O(2)CCH(3))(CO)(P(i)Pr(3))(2) (R = H (8), CH(3) (9)). The coordination number six for 4 and 5 can be also achieved by addition of CO. Under this gas Os{B(NHC(6)H(4)R)(2)}(C≡CPh)(CO)(2)(P(i)Pr(3))(2) (R = H (10), CH(3) (11)) are formed. In toluene, these alkynyl-aminoboryl compounds evolve into the aminoborylvinylidenes Os{═C═C(Ph)B(NHC(6)H(4)R)(2)}(CO)(2)(P(i)Pr(3))(2) (R = H (12), CH(3) (13)) via a unimolecular 1,3-boryl migration from the metal to the C(β) atom of the alkynyl ligand. Similarly to 4 and 5, complexes 6 and 7 coordinate CO to give Os{BF(NHC(6)H(4)R)}(C≡CPh)(CO)(2)(P(i)Pr(3))(2) (R = H (15), CH(3) (16)), which evolve to Os{═C═C(Ph)BF(NHC(6)H(4)R)}(CO)(2)(P(i)Pr(3))(2) (R = H (17), CH(3) (18)).  相似文献   

12.
Deprotonation of the phosphamonocarbaborane, exo-6-R-arachno-6,7-PCB(8)H(12) (R = Ph 1a or Me 1b), yields exo-6-R-arachno-6,7-PCB(8)H(11)(-), which when reacted with appropriate transition-metal reagents affords new metallaphosphamonocarbaborane complexes in which the metals adopt endo-eta(1), exo-eta(1), eta(4), eta(5), or eta(6) coordination geometries bonded to the formal R-arachno-PCB(8)H(11)(-), R-arachno-PCB(8)H(10)(2-), R-arachno-PCB(8)H(9)(3-), or R-nido-PCB(8)H(9)(-) ligands. The reaction of exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (1a-) with Mn(CO)(5)Br generated the eta(1)-sigma product exo-6-[Mn(CO)(5)]-endo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (2) having the [Mn(CO)(5)] fragment in the thermodynamically favored exo position at the P6 cage atom. On the other hand, reaction of 1a- with (eta(5)-C(5)H(5))Fe(CO)(2)I resulted in the formation of two products, an eta(1)-sigma complex endo-6-[(eta(5)-C(5)H(5))Fe(CO)(2)]-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (3) having the (eta(5)-C(5)H(5))Fe(CO)(2) fragment attached at the endo-P6 position and an eta(6)-closo complex, 1-(eta(5)-C(5)H(5))-2-(C(6)H(5))-closo-1,2,3-FePCB(8)H(9) (4a). Rearrangement of the endo-compound 3 to its exo-isomer 5 was observed upon photolysis of 3. Synthesis of the methyl analogue of 4a, 1-(eta(5)-C(5)H(5))-2-CH(3)-closo-1,2,3-FePCB(8)H(9) (4b), along with a double-insertion product, 1-CH(3)-2,3-(eta(5)-C(5)H(5))(2)-2,3,1,7-Fe(2)PCB(8)H(9) (6), containing two iron atoms eta(5)-coordinated to a formal R-arachno-PCB(8)H(9)(3-), was achieved by reaction of exo-6-CH(3)-arachno-6,7-PCB(8)H(11)(-) (1b-) with FeCl(2) and Na(+)C(5)H(5)(-). Complexes 4a and 4b can be considered ferrocene analogues, in which an Fe(II) is sandwiched between C(5)H(5)(-) and 6-R-nido-6,9-PCB(8)H(9)(-) anions. Reaction of exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (1a-) with cis-dichlorobis(triphenylphosphine)platinum (II) afforded two compounds, an eta(1)-sigma complex with the metal fragment again in the endo-P6 position, endo-6-[cis-(Ph(3)P)(2)PtCl]-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (7) and an eta(4)-complex, 7-(C(6)H(5))-11-(Ph(3)P)(2)-nido-11,7,8-PtPCB(8)H(10) (8) containing the formal R-arachno-PCB(8)H(10)(2)(-) anion. The structures of compounds 2, 3, 4a, 4b, 6, 7, and 8 were crystallographically confirmed.  相似文献   

13.
14.
The first stable stannyl radical (tBu2MeSi)3Sn* (1) has been synthesized by the reaction of tBu2MeSiNa with SnCl2-dioxane in diethyl ether. The X-ray crystal structure and electron paramagnetic resonance (EPR) data of this radical show that 1 has a planar geometry, being a pi-radical in both the solid and the liquid states. One-electron oxidation of 1 with Ph3C+.B(C6F5)4- in benzene quantitatively produced the corresponding cation (tBu2MeSi)3Sn+.B(C6F5)4- (2), representing the stable free stannylium ion that has been fully characterized by X-ray analysis and NMR data. Being free, 2 features a record downfield shifted resonance for stannylium ions: +2653 ppm.  相似文献   

15.
Treatment of 4-amino-5-mercapto-3-phenyl-1,2,4-triazole 2 with 1-aryl-4-carboxy-5-methyl-1,2,3-triazoles 1a-1j in a one-step reaction yielded several 6-(1-aryl-5-methyl-1,2,3-triazol-4-yl)-3-phenyl-s-triazolo[3,4-b]-1,3,4-thiadiazoles 3a-3j . The structures of all the products were established on the basis of elemental analyses and spectral data. The fragmentation of the mass spectra of 3a-3j under electron impact was discussed.  相似文献   

16.
Reaction of phosphine oxides R(3)P═O [R = Me (1a), Et (1c), (i)Pr (1d) and Ph (1e)], with the bromophosphoranimines BrPR'R'P═NSiMe(3) [R' = R' = Me (2a); R' = Me, R' = Ph (2b); R' = R' = OCH(2)CF(3) (2c)] in the presence or absence of AgOTf (OTf = CF(3)SO(3)) resulted in a rearrangement reaction to give the salts [R(3)P═N═PR'R'O-SiMe(3)]X (X = Br or OTf) ([4]X). Reaction of phosphine oxide 1a with the phosphoranimine BrPMe(2)═NSiPh(3) (5) with a sterically encumbered silyl group also resulted in the analogous rearranged product [Me(3)P═N═PMe(2)O-SiPh(3)]X ([8]X) but at a significantly slower rate. In contrast, the direct reaction of the bulky tert-butyl substituted phosphine oxide, (t)Bu(3)P═O (1b) with 2a or 2c in the presence of AgOTf yielded the phosphine oxide-stabilized phosphoranimine cations [(t)Bu(3)P═O·PR'(2)═NSiMe(3)](+) ([3](+), R' = Me (d), OCH(2)CF(3) (e)). A mechanism is proposed for the unexpected formation of [4](+) in which the formation of the donor-stabilized adduct [3](+) occurs as the first step.  相似文献   

17.
Fluorescence spectra of formycin anhydronucleosides 5,6,8 and of N-dimethylaminomethylene ribonucleosides 1b, 2, 3a-3c and 4 in aqueous solution at 5-7 × 10?5 M are reported. Compounds 5 and 6 exhibit a very strong fluorescence emission, ca. 4 and 2 times more intense than that of formycin ( 1a ) accompanied by a bathochromic shift of the emission maximum. Anhydronucleoside 8 also has an increased fluorescence intensity over the parent nucleoside 7 . The level of fluorescence emission is lower in 7 and 8 than in 1a , 5 or 6 . Introduction of N-dimethylaminomethylene group into 1a (compound 1b ) caused a decrease in the fluorescence intensity relative to 1a but a bathochromic shift of the emission maximum. In other instances (compounds 2, 3a-3c, 4 ) the introduction of N-dimethylaminomethylene group led also to fluorescent derivatives. This effect is most pronounced with 2 , whereas the fluorescence intensity of the rest of the group ( 3a-3c and 4 ) is much lower. Compounds 3c and 4 exhibit, however, a profound bathochromic shift in the fluorescence emission maximum relative to 2, 3a or 3b . A possible relationship of the fluorescence emission to the base conformation in formycin and potential use of N-dimethylaminomethylene nucleoside and nucleotide derivatives as fluorescent probes are discussed. J. Heterocyclic Chem., 14 , 135 (1977).  相似文献   

18.
Regioselective alkylation of 2-alkyl-5,6,7,8-tetrahydro-3H-cycloheptimidazol-4-one (1) and 2-alkyl-3H-cycloheptimidazol-4-one (2) was investigated. 3-[2'-(1-tert-Butyl-1H-tetrazol-5-yl)biphenyl-4-ylmethyl]-2-propyl-5,6,7,8-tetrahydro-1H-cycloheptimidazol-4-one (6) was preferentially obtained under the conditions by using NaH in DMF or THF. On the other hand, 3-[2'-(1-tert-butyl-1H-tetrazol-5-yl)biphenyl-4-ylmethyl]-2-propyl-5,6,7,8-tetrahydro-3H-cycloheptimidazol-4-one (5), the synthetic intermediate compound of Pratosartan, was obtained selectively in the presence of n-Bu(4)NBr in toluene by using aqueous sodium hydroxide as a base. In this reaction, it was found that the concentration of the alkaline solution influences its regioselectivity. This selectivity was observed even for aldehyde and ester derivatives.  相似文献   

19.
The targeted synthesis of 2-(methylsulfanyl)-6-(furan-2-yl)-4(3H)-selenoxo -pyrimidine-5-carbonitrile failed due to the formation 1-methyl-2-methylsulfanyl-6-oxo -4-(furan-2-yl)-1,6-dihydropyrimidine-5-carbonitrile. A new series of 5,6,7,8-tetrahydro-1-benzo thieno[2,3-d]pyrimidine-4-yl substituted selanyl derivatives were prepared by the reaction of sodium diselenide with 4-chloro-5,6,7,8-tetrahydro-1-benzothieno[2,3-d]pyrimidine followed by the reaction with chloroacetic acid derivatives such as ethyl chloroacetate, chloroacetamide or chloroacetonitrile. Hydrazinolysis of ethyl (5,6,7,8-tetrahydro-1-benzothieno[2,3-d]pyrimidine- 4-ylselanyl)acetate with hydrazine hydrate gave the corresponding hydrazino derivative. The latter reacted with ethyl acetoacetate, acetylacetone, diethyl malonate, ethoxymethylenemalononitrile or ethyl 2-cyano-3-ethoxyacetate to afford 5-methyl-2-[2-(5,6,7,8-tetrahydro-1-benzothieno [2,3-d]pyrimidine-4-ylselanyl)acetyl]-2,4-dihydropyrazol-3-one, 1-(3,5-dimethylpyrazol-1-yl)-2- (5,6,7,8-tetrahydro-1-benzothieno[2,3-d]pyrimidin-4-ylselanyl)ethanone, 1-[2-(5,6,7,8-tetrahydro -1-benzothieno[2,3-d]pyrimidine-4-ylselanyl)acetyl]-2,4-dihydropyrazolidine-3,5-dione and 5-Amino-1-[2-(5,6,7,8-tetrahydro-1-benzothieno[2,3-d]pyrimidin-4-ylselanyl)acetyl]-1H-pyrazol -4-yl substituted carbonitrile or ethyl carboxylate, respectively. The structure of the novel compounds was confirmed by spectroscopic tools (IR, 1H NMR 13C NMR and mass spectra) and elemental analysis.  相似文献   

20.
Lithiation of 1,2,3-triazolo[1,5-a]pyridines 4b and 4c with lithium diisopropylamide (LDA) gave the corresponding lithio derivatives 5b and 5c from which esters 6b and 6c were obtained by treatment with carbon dioxide and then dimethyl sulfate. Lithio derivatives 5a-5c reacted with DMF giving aldehydes 7a-7c. Esters 9a-9c were prepared from aldehydes 7a-7c and carbomethoxymethylenetriphenylphosphorane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号