首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The decomposition and trimerisation of (CF3)2 NOSN (2) are investigated, the structure determinations of 2 (by electron diffraction in the gas phase) and of [(CF3)2 NOSN]3 (6) (by x-ray crystallography) are reported.  相似文献   

2.
3.
The potential energy curves of the bending mode of PH2 in the ground 2B1 and the excited 2A1 states have been calculated using ab initio SCF -MO wave-functions. The radical is found, in agreement with experiment, to be bent in the two states. The calculated results clarify the interpretations of the anomalous behaviour of observed vibrational intervals, and offer an explanation of the ‘quasilinearity’; of the radical in the 2A1 state.  相似文献   

4.
本文描述了两个具有相似阴离子骨架的化合物,犤Na2(H2O)10(NH4)4犦犤V10O28犦(1)和犤Na2(H2O)10(NH4)4犦犤V9MoO28犦(2)。化合物1的阴离子是一个常见的钒十骨架,而化合物2与化合物1是同晶异质体,化合物2的阴离子是混有一个钼原子的钒十骨架。X-射线晶体结构测定表明,这两个化合物均属于三斜晶系,P1珔空间群。晶胞参数分别为化合物1:a=0.86024(4)nm,b=1.04561(5)nm,c=1.12828(4)nm,α=68.833(1)°,β=87.158(1)°,γ=67.065(1)°;化合物2:a=0.86511(3)nm,b=1.04549(5)nm,c=1.12446(5)nm,α=69.071(1)°,β=87.145(1)°,γ=66.982(1)°。  相似文献   

5.
The compound [Ru(NO)(bpym)(terpy)](PF6)3, bpym = 2,2'-bipyrimidine and terpy = 2,2':6',2"-terpyridine, with a {RuNO}6 configuration (angle Ru-N-O 175.2(4) degrees ) was obtained from the structurally characterized precursor [Ru(NO2)(bpym)(terpy)](PF6), which shows bpym-centered reduction and metal-centered oxidation, as evident from EPR spectroscopy. The relatively labile [Ru(NO)(bpym)(terpy)](3+), which forms a structurally characterized acetonitrile substitution product [Ru(CH3CN)(bpym)(terpy)](PF6)2 upon treatment with CH3OH/CH3CN, is electrochemically reduced in three one-electron steps of which the third, leading to neutral [Ru(NO)(bpym)(terpy)], involves electrode adsorption. The first-two reduction processes cause shifts of nu(NO) from 1957 via 1665 to 1388 cm(-1), implying a predominantly NO-centered electron addition. UV-vis-NIR Spectroscopy shows long-wavelength ligand-to-ligand charge transfer absorptions for [Ru(II)(NO(-I))(bpym)(terpy)]+ in the visible region, whereas the paramagnetic intermediate [Ru(NO)(bpym)(terpy)](2+) exhibits no distinct absorption maximum above 309 nm. EPR spectroscopy of the latter at 9.5, 95, and 190 GHz shows the typical invariant pattern of the {RuNO}7 configuration; however, the high-frequency measurements at 4 and 10 K reveal a splitting of the g1 and g2 components, which is tentatively attributed to conformers resulting from the bending of RuNO. DFT calculations support the assignments of oxidation states and the general interpretation of the electronic structure.  相似文献   

6.
Fourier transform infrared spectroscopy of \(\hbox {CH}_{4}/\hbox {N}_{2}\) and \(\hbox {C}_{2}\hbox {H}_{m}/\hbox {N}_2\) ( \(m = 2, 4, 6\) ) gas mixtures in a medium pressure (300 mbar) dielectric barrier discharge was performed. Consumption of the initial gas and formation of other hydrocarbon and of nitrogen-containing HCN and \(\hbox {NH}_{3}\) molecules was observed. \(\hbox {NH}_{3}\) formation was further confirmed by laser absorption measurements. The experimental result for \(\hbox {NH}_{3}\) is at variance with simulation results.  相似文献   

7.
We have investigated the interaction of nitrogen with single-crystal iron pyrite FeS(2){100} surfaces in ultra-high vacuum. N(2) adsorbs molecularly at low temperatures, desorbing at 130 K, but does not adsorb dissociatively even at pressures up to 1 bar. Atomic surface N can, however, be obtained with nitrogen ions and/or excited neutral species, generated by passing N(2) through an ion gun. Substantial nitrogen-induced disorder is seen with both ions and neutrals, and no ordered N overlayers form; a decrease in the S/Fe ratio is seen when exposing to nitrogen ions. Recombinative desorption leads to temperature-programmed desorption peaks at 410 and 520-560 K which we associate with interstitial atomic N and substitutional ionic N, respectively, in the surface regions. Thermal repair of sputter damage necessitates segregation of bulk S to the surface, which, over repeated experiments, leads to gross cumulative damage to the bulk crystal. The desorption temperatures associated with recombinative desorption of atomic N from FeS(2){100} are significantly lower than those measured for Fe surfaces. This is linked to the inability of FeS(2){100} to dissociate N(2), but suggests that N(ads) will be significantly more able to react with other species than it is on Fe surfaces.  相似文献   

8.
A novel tetra-iron thiolate carbonyl assembly is described in which two dithiolate tetracarbonyl di-iron centres with a 'butterfly' configuration of the {2Fe3S}-cores are fused by two bridging thiolates which form a central planar 2Fe2S unit and comprise the first example of a chain of four metal-metal bonded iron atoms supported by a bridging sulfur framework; the assembly electrocatalyses hydrogen evolution.  相似文献   

9.
To evaluate the redox behavior of \({\text{VO}}^{2 + } / {\text{VO}}_{2}^{ + }\) as a simulant of \({\text{NpO}}_{2}^{ + } / {\text{NpO}}_{2}^{2 + }\) in boiling nitric acid solution, i.e., typical operating conditions for nuclear fuel reprocessing plants, oxidation rate measurements for VO2+ in boiling and non-boiling nitric acid solutions, thermodynamic calculations, and kinetic calculations were performed. The results indicated that the apparent oxidation rate of VO2+ to \({\text{VO}}_{2}^{ + }\) is accelerated by a decrease in \({\text{NO}}_{2}^{ - }\) and HNO2 concentrations owing to the boiling phenomena of nitric acid solution.  相似文献   

10.
11.
本文描述了两个具有相似阴离子骨架的化合物,[Na2(H2O)10(NH4)4][V10O28](1)和[Na2(H2O)10(NH4)4][V9MoO28](2).化合物1的阴离子是一个常见的钒十骨架,而化合物2与化合物1是同晶异质体,化合物2的阴离子是混有一个钼原子的钒十骨架.X-射线晶体结构测定表明,这两个化合物均属于三斜晶系,P1空间群.晶胞参数分别为化合物1a=0.86024(4)nm,b=1.04561(5)nm,c=1.12828(4)nm,α=68.833(1)°,β=87.158(1)°,γ=67.065(1)°;化合物2a=0.86511(3)nm,b=1.04549(5)nm,c=1.12446(5)nm,α=69.071(1)°,β=87.145(1)°,γ=66.982(1)°.  相似文献   

12.
13.
Anion chromatography with ANIEKS-N selective ion exchanger and redox photometry with an antimony(V) ionic associate as selective oxidizing agent were suggested for determination of low concentrations of toxic (F?, Br?, NO 2 ? , NO 3 ? ) and biogenic (SeO 3 2? , I?) ions in some potable waters available from central water supply systems and mineral water springs.  相似文献   

14.
Building on previous single crystal X‐ray structure determinations for the group 1 salts of complex thiosulfate/univalent coinage metal anions previously defined for (NH4)9AgCl2(S2O3)4, NaAgS2O3·H2O and Na4[Cu(NH3)4][Cu(S2O3)2]·NH3, a wide variety of similar salts, of the form , M1 = group 1 metal cation, M2 = univalent coinage metal cation (Cu, Ag), (X = univalent anion), most previously known, but some not, have been isolated and subjected to similar determinations. These have defined further members of the isotypic, tetragonal series, for M1 = NH4, M2 = Cu, Ag, X = NO3, Cl, Br, I, together with the K/Cu/NO3 complex, all containing the complex anion [M2(SSO3)4]7? with M2 in an environment of symmetry, Cu, Ag‐S typically ca. 2.37, 2.58Å, with quasi‐tetrahedral S‐M‐S angular environments. Further salts of the form , n = 1‐3, have also been defined: For n = 3, M2 = Cu, M1/x = K/2.25 or 1 5/6, NH4/6, (and also for the (NH4)4Na/4H2O·MeOH adduct) the arrays take the form with distorted trigonal planar CuS3 coordination environments, Cu‐S distances being typically 2.21Å, S‐Cu‐S ranging between 105.31(4)–129.77(4)°; the silver counterparts take the form for M1 = K, NH4. For n = 2, adducts have only been defined for M2 = Ag, the anions of the M1 = Na, K adducts being dimeric and polymeric respectively: Na6[(O3SS)2Ag(μ‐SSO3)2Ag(SSO3)]·3H2O, K3[Ag(μ‐SSO3)2](∞|∞)·H2O; a polymeric copper(I) counterpart of the latter is found in Na5Cu(NO3)2(S2O3)2 ≡ 2NaNO3·Na3[Cu(μ‐SSO3)2](∞|∞). For n = 1, NaAgS2O3, the an‐ and mono‐ hydrates, exhibit a two‐dimensional polymeric complex anion in both forms but with different contributing motifs. (NH4)13Ag3(S2O3)8·2H2O takes the form (NH4)13[{(O3SS)3Ag(μ‐SSO3)}2Ag], a linearly coordinated central silver atom linking a pair of peripheral [Ag(SSO3)4]7? entities. In Na6[(O3SS)Ag(μ‐SSO3)2Ag(SSO3)]·3H2O, the binuclear anions present as Ag2S4 sheets, the associated oxygen atoms being disposed to one side, thus sandwiching layers of sodium ions; the remarkable complex Na5[Ag3(S2O3)4](∞|∞)·H2O is a variant, in which one sodium atom is transformed into silver, linking the binuclear species into a one‐dimensional polymer. In (NH4)8[Cu2(S2O3)5]·2H2O a binuclear anion of the form [(O3SS)2Cu(μ‐S.SO3)Cu(SSO3)2]8? is found; the complex (NH4)11Cu(S2O3)6 is 2(NH4)2(S2O3)·(NH4)7[Cu(SSO3)4]. A novel new hydrate of sodium thiosulfate is described, 4Na4S2O3·5H2O, largely describable as sheets of the salt, shrouded in water molecules to either side, together with a redetermination of the structure of 3K2S2O3·H2O.  相似文献   

15.
16.
The direction of excitation energy migration is reversed in a system composed of {Ru(bpy)(2)}-{pyridylporphyrin}(2) by the addition of a Zn(2+) ion. The Zn(2+) system shows an excitation-wavelength dependent emission.  相似文献   

17.
The barriers to partial rotation around the central single bond in chiral dienes \documentclass{article}\pagestyle{empty}\begin{document}${\rm HOCMe}_{\rm 2} \rlap{--} ({\rm CCl =\!= CCl\rlap{--})}_{\rm 2} {\rm X}$\end{document} have been determined by coalescence of either 1H NMR signals (X = CH2OCH3) or 13C NMR signals (X = H). In the presence of the optically active shift reagent (+) ? Eu(hfbc)3 all 1H signals were split at temperatures where the interconversion of enantiomers is slow. The temperature dependence of these spectra also yielded free activation enthalpies for the enantiomerizations which were in agreement with the ones obtained without Eu(hfbc)3. The assignment of the four methyl resonances appearing in the presence of (+) ? Eu(hfbc)3 at low temperature was possible by gradually increasing the rate of enantiomerization or gradually replacing the optically active auxiliary compound by the racemic one.  相似文献   

18.
19.
20.
A new {Fe(NO)(2)}(10) dinitrosyl iron complex possessing a 2,9-dimethyl-1,10-phenanthroline ligand has been prepared. This complex exhibits dioxygenase activity, converting NO to nitrate (NO(3)(-)) anions. During the oxygenation reaction, formation of reactive nitrating species is implicated, as shown in the effective o-nitration with a phenolic substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号