首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Irradiation at 239 ± 20 nm of a p-H(2) matrix containing methoxysulfinyl chloride, CH(3)OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν(1), CH(2) antisymmetric stretching), 2999.5 (ν(2), CH(3) antisymmetric stretching), 2950.4 (ν(3), CH(3) symmetric stretching), 1465.2 (ν(4), CH(2) scissoring), 1452.0 (ν(5), CH(3) deformation), 1417.8 (ν(6), CH(3) umbrella), 1165.2 (ν(7), CH(3) wagging), 1152.1 (ν(8), S=O stretching mixed with CH(3) rocking), 1147.8 (ν(9), S=O stretching mixed with CH(3) wagging), 989.7 (ν(10), C-O stretching), and 714.5 cm(-1) (ν(11), S-O stretching) modes of syn-CH(3)OSO. When CD(3)OS(O)Cl in a p-H(2) matrix was used, lines at 2275.9 (ν(1)), 2251.9 (ν(2)), 2083.3 (ν(3)), 1070.3 (ν(4)), 1056.0 (ν(5)), 1085.5 (ν(6)), 1159.7 (ν(7)), 920.1 (ν(8)), 889.0 (ν(9)), 976.9 (ν(10)), and 688.9 (ν(11)) cm(-1) appeared and are assigned to syn-CD(3)OSO; the mode numbers correspond to those used for syn-CH(3)OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86∕aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH(3)OSO near 2991, 2956, 1152, and 994 cm(-1) to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD(3)OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H(2) such that the Cl atom, produced via UV photodissociation of CH(3)OS(O)Cl in situ, might escape from the original cage to yield isolated CH(3)OSO radicals.  相似文献   

2.
A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the transient species produced in gaseous reactions of benzoyl radical, C(6)H(5)CO, with O(2). C(6)H(5)CO was produced either from photolysis of acetophenone, C(6)H(5)C(O)CH(3), at 248 nm, or from photolysis of a mixture of benzaldehyde, C(6)H(5)CHO, and Cl(2) at 355 nm. Two intense bands near 1830 and 1226 cm(-1) are assigned to the C=O stretching (ν(6)) and the C-C stretching mixed with C-H deformation (ν(13)) modes, and two weaker bands near 1187 and 1108 cm(-1) are assigned to the ν(14) (C-H deformation) and ν(16) (O-O stretching /C-H deformation) modes of C(6)H(5)C(O)OO, the benzoylperoxy radical. These observed vibrational wave numbers and relative infrared intensities agree with those reported for syn-C(6)H(5)C(O)OO isolated in solid Ar and values predicted for syn-C(6)H(5)C(O)OO with the B3LYP/cc-pVTZ method. The simulated rotational contours of the two intense bands based on rotational parameters predicted with the B3LYP∕cc-pVTZ method fit satisfactorily with experimental results.  相似文献   

3.
A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to monitor time-resolved infrared absorption of transient species produced upon irradiation at 248 nm of a flowing mixture of CH(3)SSCH(3) and O(2) at 260 K. Two transient bands observed with origins at 1397±1 and 1110±3 cm(-1) are tentatively assigned to the antisymmetric CH(3)-deformation and O-O stretching modes of syn-CH(3)SOO, respectively; the observed band contour indicates that the less stable anti-CH(3)SOO conformer likely contributes to these absorption bands. A band with an origin at 1071±1 cm(-1), observed at a slightly later period, is assigned to the S=O stretching mode of CH(3)SO, likely produced via secondary reactions of CH(3)SOO. These bands fit satisfactorily with vibrational wavenumbers and rotational contours simulated based on rotational parameters of syn-CH(3)SOO, anti-CH(3)SOO, and CH(3)SO predicted with density-functional theories B3LYP/aug-cc-pVTZ and B3P86/aug-cc-pVTZ. Two additional bands near 1170 and 1120 cm(-1) observed at a later period are tentatively assigned to CH(3)S(O)OSCH(3) and CH(3)S(O)S(O)CH(3), respectively; both species are likely produced from self-reaction of CH(3)SOO. The production of SO(2) via secondary reactions was also observed and possible reaction mechanism is discussed.  相似文献   

4.
A step-scan Fourier-transform infrared spectrometer coupled with a multipass absorption cell was utilized to monitor the gaseous transient species benzoyl radical, C(6)H(5)CO. C(6)H(5)CO was produced either from photolysis of acetophenone, C(6)H(5)C(O)CH(3), at 248 nm or in reactions of phenyl radical (C(6)H(5)) with CO; C(6)H(5) was produced on photolysis of C(6)H(5)Br at 248 nm. One intense band at 1838 ± 1 cm(-1), one weak band at 1131 ± 3 cm(-1), and two extremely weak bands at 1438 ± 5 and 1590 ± 10 cm(-1) are assigned to the C═O stretching (ν(6)), the C-C stretching mixed with C-H deformation (ν(15)), the out-of-phase C(1)C(2)C(3)/C(5)C(6)C(1) symmetric stretching (ν(10)), and the in-phase C(1)C(2)C(3)/C(4)C(5)C(6) antisymmetric stretching (ν(7)) modes of C(6)H(5)CO, respectively. These observed vibrational wavenumbers and relative IR intensities agree with those reported for C(6)H(5)CO isolated in solid Ar and with values predicted for C(6)H(5)CO with the B3LYP/aug-cc-pVDZ method. The rotational contours of the two bands near 1838 and 1131 cm(-1) simulated according to rotational parameters predicted with the B3LYP/aug-cc-pVDZ method fit satisfactorily with the experimental results. Additional products BrCO, C(6)H(5)C(O)Br, and C(6)H(5)C(O)C(6)H(5) were identified in the C(6)H(5)Br/CO/N(2) experiments; the kinetics involving C(6)H(5)CO and C(6)H(5)C(O)Br are discussed.  相似文献   

5.
A step-scan Fourier-transform spectrometer coupled with a 6.4 m multipass absorption cell was employed to detect time-resolved infrared absorption spectra of the reaction intermediate CH3SO2 radical, produced upon irradiation of a flowing gaseous mixture of CH3I and SO2 in CO2 at 248 nm. Two transient bands with origins at 1280 and 1076 cm(-1) were observed and are assigned to the SO2-antisymmetric and SO2-symmetric stretching modes of CH3SO2, respectively. Calculations with density-functional theory (B3LYP/aug-cc-pVTZ and B3P86/aug-cc-pVTZ) predicted the geometry, vibrational, and rotational parameters of CH3SO2 and CH3OSO. Based on predicted rotational parameters, the simulated absorption band of the SO2-antisymmetric stretching mode that is dominated by the b-type rotational structure agrees satisfactorily with experimental results. In addition, a band near 1159 cm(-1) observed at a later period is tentatively attributed to CH3SO2I. The reaction kinetics of CH3 + SO2 --> CH3SO2 and CH3SO2 + I --> CH3SO2I based on the rise and decay of absorption bands of CH3SO2 and CH3SO2I agree satisfactorily with previous reports.  相似文献   

6.
Newberyite Mg(PO3OH)·3H2O is a mineral found in caves such as from Moorba Cave, Jurien Bay, Western Australia, the Skipton Lava Tubes (SW of Ballarat, Victoria, Australia) and in the Petrogale Cave (Madura, Eucla, Western Australia). Because these minerals contain oxyanions, hydroxyl units and water, the minerals lend themselves to spectroscopic analysis. Raman spectroscopy can investigate the complex paragenetic relationships existing between a number of 'cave' minerals. The intense sharp band at 982 cm(-1) is assigned to the PO4(3-)ν1 symmetric stretching mode. Low intensity Raman bands at 1152, 1263 and 1277 cm(-1) are assigned to the PO4(3-)ν3 antisymmetric stretching vibrations. Raman bands at 497 and 552 cm(-1) are attributed to the PO4(3-)ν4 bending modes. An intense Raman band for newberyite at 398 cm(-1) with a shoulder band at 413 cm(-1) is assigned to the PO4(3-)ν2 bending modes. The values for the OH stretching vibrations provide hydrogen bond distances of 2.728 ? (3267 cm(-1)), 2.781 ? (3374 cm(-1)), 2.868 ? (3479 cm(-1)), and 2.918 ? (3515 cm(-1)). Such hydrogen bond distances are typical of secondary minerals. Estimates of the hydrogen-bond distances have been made from the position of the OH stretching vibrations and show a wide range in both strong and weak bonds.  相似文献   

7.
CH(3)OO radicals were produced upon irradiation of a flowing mixture of CH(3)I and O(2) with a KrF excimer laser at 248 nm. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record temporally resolved IR absorption spectra of reaction intermediates. Transient absorption bands with origins at 3033, 2954, 1453, 1408, 1183, 1117, 3020, and 1441 cm(-1) are assigned to nu(1)-nu(6), nu(9), and nu(10) modes of CH(3)OO, respectively, close to wavenumbers reported for CH(3)OO isolated in solid Ar. Calculations with density-functional theory (B3LYP/aug-cc-pVTZ) predicted the geometry and the vibrational wavenumbers of CH(3)OO; the vibrational wavenumbers and relative IR intensities of CH(3)OO agree satisfactorily with these observed features. The rotational contours of IR spectra of CH(3)OO, simulated based on ratios of predicted rotational parameters for the upper and lower states and on experimental rotational parameters of the ground state, agree satisfactorily with experimental results; the mixing ratios of a-, b-, and c-types of rotational structures were evaluated based on the direction of dipole derivatives predicted quantum chemically. A feature at 995 cm(-1), ascribed to CH(3)OOI from a secondary reaction of CH(3)OO with I, was also observed.  相似文献   

8.
Observations of the jet-cooled infrared spectrum of CH(3)O in the CH stretching region have been extended, down to 2756 cm(-1) and up to 3003 cm(-1). In the lower frequency extension, a single vibronic band has been assigned. In the higher frequency region, the spectrum becomes complex above 2900 cm(-1) and remains so until near 2970 cm(-1) where it rapidly becomes sparse. Including the single vibronic band previously reported, a total of four bands have been assigned. Two bands including the original one follow a perpendicular DeltaP = +1 rotational selection rule and the other two bands follow a parallel DeltaP = 0 selection rule. In addition to these in the congested region between 2900 and 2970 cm(-1), ten isolated sub-bands (two P' = -1/2, two P' = +1/2, and six P' = +1.5) have been assigned, but it has so far not been possible to connect these together to form bands. Taken together these observations suggest that there are strong vibronic couplings between the two CH stretching vibrations and the overtone and combination levels in the region.  相似文献   

9.
Irradiation of samples of solid Ne near 3.0 K containing ethene (C(2)H(4)) with vacuum ultraviolet radiation at 120 nm from synchrotron yielded new spectral lines at 3141.0, 2953.6, 2911.5, 1357.4, 677.1, 895.3, and 857.0 cm(-1). These features are assigned to alpha-CH stretching (nu(1)), CH(2) antisymmetric stretching (nu(2)), CH(2) symmetric stretching (nu(3)), CH(2)-bending (nu(5)), HCCH cis bending (nu(7)), CH(2) out-of-plane bending (nu(8)), and alpha-CH out-of-plane bending (nu(9)) modes of C(2)H(3), respectively, based on results of (13)C- and D-isotopic experiments and quantum-chemical calculations. These calculations using density-functional theory (B3LYP and PW91PW91/aug-cc-pVTZ) predict vibrational wavenumbers, IR intensities, and isotopic ratios of vinyl radical that agree satisfactorily with our experimental results.  相似文献   

10.
Irradiation with a mercury lamp at 254 nm of a p-H(2) matrix containing CH(3)I and SO(2) at 3.3 K, followed by annealing of the matrix, produced prominent features at 633.8, 917.5, 1071.1 (1072.2), 1272.5 (1273.0, 1273.6), and 1416.0 cm(-1), attributable to ν(11) (C-S stretching), ν(10) (CH(3) wagging), ν(8) (SO(2) symmetric stretching), ν(7) (SO(2) antisymmetric stretching), and ν(4) (CH(2) scissoring) modes of methylsulfonyl radical (CH(3)SO(2)), respectively; lines listed in parentheses are weaker lines likely associated with species in a different matrix environment. Further irradiation at 365 nm diminishes these features and produced SO(2) and CH(3). Additional features at 1150.1 and 1353.1 (1352.7) cm(-1) are tentatively assigned to the SO(2) symmetric and antisymmetric stretching modes of ISO(2). These assignments are based on comparison of observed vibrational wavenumbers and (18)O- and (34)S-isotopic shifts with those predicted with the B3P86 method. Our results agree with the previous report of transient IR absorption bands of gaseous CH(3)SO(2) at 1280 and 1076 cm(-1). These results demonstrate that the cage effect of solid p-H(2) is diminished so that CH(3) radicals, produced via UV photodissociation of CH(3)I in situ, might react with SO(2) to form CH(3)SO(2) during irradiation and upon annealing. Observation of CH(3)SO(2) but not CH(3)OSO is consistent with the theoretical predictions that only the former reactions proceed via a barrierless path.  相似文献   

11.
Raman spectroscopy has been used to study the tellurite minerals spiroffite and carlfriesite, which are minerals of formula type A(2)(X(3)O(8)) where A is Ca(2+) for the mineral carlfriesite and is Zn(2+) and Mn(2+) for the mineral spiroffite. Raman bands for spiroffite observed at 721 and 743 cm(-1), and 650 cm(-1) are attributed to the nu(1) (Te(3)O(8))(2-) symmetric stretching mode and the nu(3) (Te(3)O(8))(2-) antisymmetric stretching modes, respectively. A second spiroffite mineral sample provided a Raman spectrum with bands at 727 cm(-1) assigned to the nu(1) (Te(3)O(8))(2-) symmetric stretching modes and the band at 640cm(-1) accounted for by the nu(3) (Te(3)O(8))(2-) antisymmetric stretching mode. The Raman spectrum of carlfriesite showed an intense band at 721 cm(-1). Raman bands for spiroffite, observed at (346, 394) and 466 cm(-1) are assigned to the (Te(3)O(8))(2-)nu(2) (A(1)) bending mode and nu(4) (E) bending modes. The Raman spectroscopy of the minerals carlfriesite and spiroffite are difficult because of the presence of impurities and other diagenetically related tellurite minerals.  相似文献   

12.
The melting behavior of a bacterially synthesized biodegradable polymer, poly(3-hydroxybutyrate) (PHB), was investigated by using generalized two-dimensional infrared (2D IR) correlation spectroscopy. Temperature-dependent spectral variations in the regions of the C-H stretching (3100-2850 cm(-1)), C=O stretching (1800-1680 cm(-1)), and C-O-C stretching (1320-1120 cm(-1)) bands were monitored during the melting process. The asynchronous 2D correlation spectrum for the C=O stretching band region resolved two crystalline bands at 1731 and 1723 cm(-1). The intense band at 1723 cm(-1) may be due to the highly ordered crystalline part of PHB, and the weak band at 1731 cm(-1) possibly arises from the crystalline part with a less ordered structure. These crystalline bands at 1731 and 1723 cm(-1) share asynchronous cross peaks with a band at around 1740 cm(-1) assignable to the C=O band due to the amorphous component. This observation indicates that the decreases in the crystalline components do not proceed simultaneously with the increase in the amorphous component. In the 3020-2915 cm(-1) region where bands due to the asymmetric CH3 stretching and antisymmetric CH2 stretching modes are expected to appear, eight bands are identified at 3007, 2995, 2985, 2975, 2967, 2938, 2934, and 2929 cm(-1). The bands at 2985 and 2938 cm(-1) are ascribed to the amorphous part while the rest come from crystal field splitting, which is a characteristic of polymers with a helical structure.  相似文献   

13.
The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following excitation in the 4ν(1) region (OH stretch overtone, near 13,600 cm(-1)) was studied using sliced velocity map imaging. A new vibrational band near 13,660 cm(-1) arising from interaction with the antisymmetric CH stretch was discovered for CH(2)OH. In CD(2)OH dissociation, D atom products (correlated with CHDO) were detected, providing the first experimental evidence of isomerization in the CH(2)OH ? CH(3)O (CD(2)OH ? CHD(2)O) system. Analysis of the H (D) fragment kinetic energy distributions shows that the rovibrational state distributions in the formaldehyde cofragments are different for the OH bond fission and isomerization pathways. Isomerization is responsible for 10%-30% of dissociation events in all studied cases, and its contribution depends on the excited vibrational level of the radical. Accurate dissociation energies were determined: D(0)(CH(2)OH → CH(2)O + H) = 10,160 ± 70 cm(-1), D(0)(CD(2)OH → CD(2)O + H) = 10,135 ± 70 cm(-1), D(0)(CD(2)OH → CHDO + D) = 10,760 ± 60 cm(-1).  相似文献   

14.
Infrared absorption spectra have been measured for the mixture of CO(2) and H(2)O in a cryogenic nitrogen matrix. The 1:1 CO(2)/H(2)O complex has been observed. Each structure of this complex should have two bending frequencies corresponding to the CO(2) fundamental bending mode (ν(2)). In this work, three bending frequencies corresponding to the CO(2) fundamental bending mode (ν(2)) have been detected; one of them at 660.3 cm(-1) is reported here for the first time. This finding helps confirm the existence of two structures for this complex. A new feature attributed to a CO(2) and H(2)O complex is observed at 3604.4 cm(-1) and is tentatively assigned to the CO(2)/H(2)O complex band corresponding to the CO(2) combination mode (ν(3) + 2ν(2)). In addition, a band that belongs to a CO(2) and H(2)O complex is detected at 3623.8 cm(-1) for the first time and is tentatively assigned to the (CO(2))(2)/H(2)O complex band corresponding to the symmetric stretching mode (ν(1)) of H(2)O.  相似文献   

15.
A high yield of carbon chains has been produced by the laser ablation of carbon rods having (13)C enrichment. FTIR spectroscopy of these molecules trapped in solid Ar has resulted in the identification of two new combination bands for linear C(5) and C(9). The (ν(1) + ν(4)) combination band of linear C(5) has been observed at 3388.8 cm(-1), and comparison of (13)C isotopic shift measurements with the predictions of density functional theory calculations (DFT) at the B3LYP/cc-pVDZ level makes possible the assignment of the ν(1)(σ(g)(+)) stretching fundamental at 1946 cm(-1). Similarly, the observation of the (ν(2) + ν(7)) combination band of linear C(9) at 3471.8 cm(-1) enables the assignment of the ν(2)(σ(g)(+)) stretching fundamental at 1871 cm(-1). The third and weakest of the infrared stretching fundamentals of linear C(7), the ν(6)(σ(u)(+)) fundamental at 1100.1 cm(-1), has also been assigned.  相似文献   

16.
We report the infrared absorption spectrum of the methylthio (or thiomethoxy) radical, CH(3)S (X (2)E(3/2)), produced via photodissociation in situ of three precursors CH(3)SH, CH(3)SCH(3), and CH(3)SSCH(3) isolated in solid p-H(2). The common absorption features observed with similar intensity ratios in each experiment are assigned to CH(3)S. The wavenumbers of these features agree satisfactorily with those predicted with a spin-vibronic Hamiltonian accounting for the anharmonic effects and the Jahn-Teller effects to the quartic term [A. V. Marenich and J. E. Boggs, J. Chem. Theory Comput. 1, 1162 (2005)]. In addition to an absorption line at 724.2?cm(-1), corresponding to a transition of 3(1) previously determined to be 727?cm(-1) from fluorescence spectra of gaseous CH(3)S, we identified fundamental transitions 6(1)(a(1)) at 771.1, 6(1)(e) at 1056.6, 5(1)(a(1)) at 1400.0, 4(1)(a(1)) at 2898.4?cm(-1), and several combination and overtone transitions. In contrast, photolysis of CH(3)SSCH(3) isolated in solid Ar produces mainly H(2)CS, CH(3)SH, and CS(2), but no CH(3)S. These results demonstrate the feasibility of using photolysis in situ of precursors isolated in solid p-H(2) to produce free radicals by taking advantage of the diminished cage effect of the matrix.  相似文献   

17.
The wavenumber shift in the CD stretching (ν(CD)) band of the monodeuterated methanol (CH(2)DOH) has been monitored in water-methanol mixtures. For the pure liquid, two dominant bands are observed at 2148 and 2176 cm(-1) in the ν(CD) region. The matrix isolation technique and spectral simulation based on quantum chemical calculations have revealed that these two bands are categorized into the C(1) mode and originate from methanol molecules participating in different hydrogen(H)-bonding patterns. The simulation results for methanol clusters have suggested that the 2148 cm(-1) band is concerned with the end-donor species in the H-bonding network. The relative intensity of the band near 2148 cm(-1) decreases with increasing water concentration, indicating that the population of the end-donor species decreases by the addition of water. This spectral change causes the blue shift in the mean center of the ν(CD) band of CH(2)DOH in water.  相似文献   

18.
Transmission infrared spectroscopy (TIRS) has been used to investigate the surface-bound species formed in the two-step chlorination/alkylation reaction of crystalline (111)-oriented Si surfaces. Spectra were obtained after hydrogen termination, chlorine termination, and reaction of the Cl-Si(111) surface with CH(3)MgX or C(2)H(5)MgX (X = Cl, Br) to form methyl (CH(3))- or ethyl (C(2)H(5))-terminated Si(111) surfaces, respectively. Freshly etched H-terminated Si(111) surfaces that were subsequently chlorinated by immersion in a saturated solution of PCl(5) in chlorobenzene were characterized by complete loss of the Si-H stretching and bending modes at 2083 and 627 cm(-1)(,) respectively, and the appearance of Si-Cl modes at 583 and 528 cm(-1). TIRS of the CH(3)-terminated Si(111) surface exhibited a peak at 1257 cm(-1) polarized perpendicular to the surface assigned to the C-H symmetrical bending, or "umbrella" motion, of the methyl group. A peak observed at 757 cm(-1) polarized parallel to the surface was assigned to the C-H rocking motion. Alkyl C-H stretch modes on both the CH(3)- and C(2)H(5)-terminated surfaces were observed near 2900 cm(-1). The C(2)H(5)-terminated Si(111) surface additionally exhibited broad bands at 2068 and 2080 cm(-1), respectively, polarized perpendicular to the surface, as well as peaks at 620 and 627 cm(-1), respectively, polarized parallel to the surface. These modes were assigned to the Si-H stretching and bending motions, respectively, resulting from H-termination of surface atoms that did not form Si-C bonds during the ethylation reaction.  相似文献   

19.
Tellurites may be subdivided according to formula and structure. There are five groups based upon the formulae (a) A(XO3), (b) A(XO3).xH2O, (c) A2(XO3)3.xH2O, (d) A2(X2O5) and (e) A(X3O8). Raman spectroscopy has been used to study rajite and denningite, examples of group (d). Minerals of the tellurite group are porous zeolite-like materials. Raman bands for rajite observed at 740, and 676 and 667 cm(-1) are attributed to the nu1 (Te2O5)(2-) symmetric stretching mode and the nu3 (TeO3)(2-) antisymmetric stretching modes, respectively. A second rajite mineral sample provided a more complex Raman spectrum with Raman bands at 754 and 731 cm(-1) assigned to the nu1 (Te2O5)(2-) symmetric stretching modes and two bands at 652 and 603 cm(-1) are accounted for by the nu3 (Te2O5)(2-) antisymmetric stretching mode. The Raman spectrum of dennigite displays an intense band at 734 cm(-1) attributed to the nu1 (Te2O5)(2-) symmetric stretching mode with a second Raman band at 674 cm(-1) assigned to the nu3 (Te2O5)(2-) antisymmetric stretching mode. Raman bands for rajite, observed at (346, 370) and 438 cm(-1) are assigned to the (Te2O5)(2-)nu2 (A1) bending mode and nu4 (E) bending modes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号