首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrocatalytic oxidation of hydrazine was investigated on a cobalt hydroxide modified glassy carbon (CHM-GC) electrode in alkaline solution. The process of oxidation involved and its kinetics were established by using cyclic voltammetry, chronoamperometry techniques as well as steady state polarization measurements. In cyclic voltammetry (CV) studies, in the presence of hydrazine the peak current increase of the oxidation of cobalt hydroxide is followed by a decrease in the corresponding cathodic current. This indicates that hydrazine is oxidized on the redox mediator that is immobilized on the electrode surface via an electrocatalytic mechanism. A mechanism based on the electrochemical generation of Co(IV) active sites and their subsequent consumption by the hydrazine in question was also investigated.  相似文献   

2.
A stable electroactive thin film of poly(4,5-dihydroxy-1,3-benzenedisulfonic acid) was electrochemically deposited at the surface of multiwall carbon nanotubes-glassy carbon electrode. The electrocatalytic oxidation of hydrazine has been studied at the surface of the modified electrode using cyclic voltammetry, chronoamperometry and linear sweep voltammetry as diagnostic techniques. The modified electrode exhibits good electrocatalytic activity for the oxidation of hydrazine with a good sensitivity. Linear calibration range was in the wide concentration range of 10–3540 μM hydrazine with a detection limit of 1.8 μM and a sensitivity of 85.3 nA/μM. A Tafel plot, derived from voltammograms, indicated a one-electron transfer process to be the rate-limiting step and the overall number of electrons involved in the catalytic oxidation of hydrazine was found to be four. The influences of potentially interfering substances were studied. The diffusion coefficient of hydrazine was also evaluated. Finally, the proposed modified electrode was used for the determination of hydrazine in spiked water samples.  相似文献   

3.
应用电化学循环伏安法,以银作工作电极研究了水合肼在离子液体BmimPF6中的氧化过程.结果显示,银离子对水合肼的氧化过程具有催化作用,其氧化峰电位0.16V(vs.SCE)电催化反应速率决定步骤为1电子的氧化还原过程.在0~3.4mmol/L肼浓度范围内,催化反应峰电流与肼浓度间具有良好的线性关系.  相似文献   

4.
In this work, we developed an electrochemical method for the detection of hydrazine based on palladium nanoparticle/carbon nanofibers (Pd/CNFs). Pd/CNFs were prepared by electrospinning technique and subsequent thermal treatments. The electrocatalytic behaviors of Pd/CNFs modified glassy carbon electrode (Pd/CNF‐GCE) for hydrazine oxidation were evaluated by cyclic voltammetry (CV), an obvious and well‐defined oxidation peak appeared at ?0.32 V (vs. Ag/AgCl). The mechanism of the oxidation of hydrazine at Pd/CNF‐GCE was also studied, which demonstrated an irreversible diffusion‐controlled electrode process and a four‐electron transfer involved in the overall reaction. Furthermore, the wide linear range, low detection limit, good reproducibility and excellent storage stability were obtained utilizing differential pulse voltammetry (DPV).  相似文献   

5.
Gawargious YA  Besada A 《Talanta》1975,22(9):757-760
Two new, simple, rapid, and accurate iodometric amplification methods are described for the micro and submicro determination of hydrazine. The first depends on oxidation with a chloroform solution of iodine and removal of its excess, oxidation of the resulting iodide with bromine, and iodometric titration of the liberated iodate. The second method is based on oxidation with periodate at pH 8, masking of the excess of periodate with molybdate at pH 3, and iodometric titration of the iodate. The order of amplification involved in the two methods is 6- and 3-fold, respectively. Micro amounts of hydrazine sulphate and dihydrochloride were determined satisfactorily by both methods, the average recoveries being 98.6 and 99.4%.  相似文献   

6.
The application of p-aminophenol as a suitable mediator, as a sensitive and selective voltammetric sensor for the determination of hydrazine using square wave voltammetric method were described. The modified multiwall carbon nanotubes paste electrode exhibited a good electrocatalytic activity for the oxidation of hydrazine at pH = 7.0. The catalytic oxidation peak currents showed a linear dependence of the peaks current to the hydrazine concentrations in the range of 0.5–175 μmol/L with a correlation coefficient of 0.9975. The detection limit (S/N = 3) was estimated to be 0.3 μmol/L of hydrazine. The relative standard deviations for 0.7 and 5.0 μmol/L hydrazine were 1.7 and 1.1%, respectively. The modified electrode showed good sensitivity and selectivity. The diffusion coefficient (D = 9.5 × 10–4 cm2/s) and the kinetic parameters such as the electron transfer coefficient (α = 0.7) of hydrazine at the surface of the modified electrode were determined using electrochemical approaches. The electrode was successfully applied for the determination of hydrazine in real samples with satisfactory results.  相似文献   

7.
The electrooxidation of hydrazine and its methylderivatives (methylhydrazine and 1,1-dimethylhydrazine) on bare Pt and Pt electrode surfaces modified by underpotential metal adsorbates was studied in acetonitrile. On bare Pt, one-third of the molecules of the substances under examination undergo a two-electron oxidation to the corresponding diimides, while the remaining number of molecules act as the required proton acceptors in neutral acetonitrile. In alkaline solutions, hydrazine undergoes a quantitative four-electron oxidation process, while its methyl derivatives are oxidized quantitatively to the corresponding diimides in the same media. The pronounced inhibition effects on hydrazine oxidation caused by underpotential T1 and Pb adsorbates were interpreted in terms of a change in the chemical interaction of hydrazine molecules and the electrode surface modified by the underpotential metal adsorbates.  相似文献   

8.
The meso-tetra(para-aminophenyl) porphyrinatocobalt(II) (Co(II)MTpAP) and meso-tetra(para-aminophenyl)porphyrinatonickel(II) (Ni(II)MTpAP) were self-assembled on a glassy carbon electrode (GCE) and were utilized for the oxidation of hydrazine. The oxidation of hydrazine at the self-assembled monolayers (SAMs) of Co(II)MTpAP and Ni(II)MTpAP occurred at ?0.20 and 0.42 V, respectively. When compared to the SAM of Ni(II)MTpAP, Co(II)MTpAP SAM not only decreased the overpotential of hydrazine oxidation but also enormously increased its current. The oxidation of hydrazine was influenced by pH. While increasing the pH, the oxidation potential of hydrazine was shifted towards a less positive potential. Further, an inverted shape cyclic voltammogram (CV) was observed for the oxidation of hydrazine at Co(II)MTpAP-modified GCE, whereas a normal CV curve was observed at Ni(II)MTpAP-modified GCE. The appearance of the inverted shape peak for hydrazine oxidation at the SAM of Co(II)MTpAP is due to the oxidation of axially ligated hydrazine molecules during the reverse potential scan. The hydrazine oxidation was also performed at amine-functionalized cobalt and nickel phthalocyanine-modified electrodes in order to study the influence of a macrocyclic ring. Irrespective of the macrocyclic ring, an inverted shape CV was observed at cobalt phthalocyanine-modified electrode.  相似文献   

9.
《Electroanalysis》2006,18(5):507-512
A coumestan derivative modified carbon paste electrode (CMCPE) was used as a sensitive electrochemical sensor for determination of electrocatalytic of hydrazine and hydroxylamine. The mechanism of electrocatalytic oxidation of both hydrazine and hydroxylamine using CMCPE was investigated by cyclic voltammetry and polarization studies. The kinetic parameters such as the electron transfer coefficient, α, heterogeneous rate constant, k′, and exchange current density, j0, for oxidation of hydrazine and hydroxylamine at the CMCPE surface were determined using cyclic voltammetry. Further more, the linear dynamic range, sensitivity and limit of detection for hydrazine and hydroxylamine detections were evaluated using differential pulse voltammetry.  相似文献   

10.
The oxidation of hydrazine on poly-3,4-ethylenedioxythiophene (PEDOT/Pd) composite films was studied. The films were obtained by chemical deposition of palladium into a PEDOT polymer matrix. The structure of the films was characterized by electron microscopy. The effect of hydrazine concentration and amount of deposited palladium on the oxidation of hydrazine in phosphate buffer solutions (pH 6.86) was investigated.  相似文献   

11.
For the first time, an electrodeposited nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles), as an excellent bifunctional electrocatalyst, was successfully used for hydrazine and hydroxylamine electrocatalytic oxidation. The results show that, at the present bifunctional modified electrode, two different redox couples of ruthenium oxides serve as electrocatalysts for simultaneous electrocatalytic oxidation of hydrazine and hydroxylamine. At the modified electrode surface, the peaks of differential pulse voltammetry (DPV) for hydrazine and hydroxylamine oxidation were clearly separated from each other when they co-exited in solution. Thus, it was possible to simultaneously determine hydrazine and hydroxylamine in the samples at a ruthenium oxide nanoparticles modified glassy carbon electrode (RuON-GCE). Linear calibration curves were obtained for 2.0-268.3 μM and 268.3-417.3 μM of hydrazine and for 4.0-33.8 μM and 33.8-78.3 μM of hydroxylamine at the modified electrode surface using an amperometric method. The amperometric method also exhibited the detection limits of 0.15 μM and 0.45 μM for hydrazine and hydroxylamine respectively. RuON-GCE was satisfactorily used for determination of spiked hydrazine in two water samples. Moreover, the studied bifunctional modified electrode exhibited high sensitivity, good repeatability, wide linear range and long-term stability.  相似文献   

12.
The electrocatalytic oxidation of hydrazine at a carbon paste electrode spiked with acetylferrocene as a mediator was studied by cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. In contrast to other ferrocenic compounds, acetylferrocene exhibits a chemical irreversible behavior, but it can act as an effective mediator for electrocatalytic oxidation of hydrazine, too. The heterogeneous electron transfer rate constant between acetylferrocene and the electrode substrate (carbon paste) and the diffusion coefficient of spiked acetylferrocene in silicon oil were estimated to be about 3.45×10?4 cm s?1 and 4.45×10?9 cm2 s?1, respectively. It has been found that under the optimum conditions (pH 7.5) the oxidation of hydrazine occurs at a potential of about 228 mV less positive than that of an unmodified carbon paste electrode. The catalytic oxidation peak current of hydrazine was linearly dependent on its concentration and the obtained linear range was 3.09×10?5 M–1.03×10?3 M. The detection limit (2σ) has been determined as 2.7×10?5 M by cyclic voltammetry. Also, the peak current was increased linearly with the concentration of hydrazine in the range of 1×10?5 M–1×10?3 M by differential pulse voltammetry with a detection limit of 1×10?5 M. This catalytic oxidation of hydrazine has been applied as a selective, simple, and precise new method for the determination of hydrazine in water samples.  相似文献   

13.
A very stable electroactive film of catechin was electrochemically deposited on the surface of activated glassy carbon electrode. The electrochemical behavior of catechin modified glassy carbon electrode (CMGCE) was extensively studied using cyclic voltammetry. The properties of the electrodeposited films, during preparation under different conditions, and the stability of the deposited film were examined. The charge transfer coefficient (α) and charge transfer rate constant (k s) for catechin deposited film were calculated. It was found that the modified electrode exhibited excellent electrocatalytic activity toward hydrazine oxidation and it also showed a very large decrease in the overpotential for the oxidation of hydrazine. The CMGCE was employed to study electrocatalytic oxidation of hydrazine using cyclic voltammetry, rotating disk voltammetry, chronoamperometry, amperometry and square-wave voltammetry as diagnostic techniques. The catalytic rate constant of the modified electrode for the oxidation of hydrazine was determined by cyclic voltammetry, chronoamperometry and rotating disk voltammetry and was found to be around 10−3 cm s−1 . In the used different voltammetric methods, the plot of the electrocatalytic current versus hydrazine concentration is constituted of two linear segments with different ranges of hydrazine concentration. Furthermore, amperometry in stirred solution exhibits a detection limit of 0.165 μM and the precision of 4.7% for replicate measurements of 40.0 μM solution of hydrazine.  相似文献   

14.
This paper describes the electrochemical properties of reduced graphene sheets (RGSs) for the electrocatalytic properties towards the hydrazine oxidation in alkaline media. The RGSs have been produced in high yield by a soft chemistry route involving graphite oxidation, ultrasonic exfoliation, and chemical reduction. The RGSs possess excellent electrocatalytic activity towards the hydrazine oxidation. In our opinion, RGSs are a potential electrode material for direct hydrazine fuel cells and electrochemical sensors for hydrazine detection.  相似文献   

15.
The electrocatalytical oxidation of hydrazine at low potential using tetracyanoquinodimethanide adsorbed on silica modified with titanium oxide was investigated by cyclic voltammetry and amperometry. The modified electrode was prepared modifying a carbon paste electrode employing lithium tetracyanoquinodimethanide adsorbed onto silica gel modified with titanium oxide. This electrode showed an excellent catalytic activity and stability for hydrazine oxidation. With this modified electrode, the oxidation potential of hydrazine was shifted toward less positive value, presenting a peak current much higher than those observed on a bare GC electrode. The linear response range, sensitivity and detection limit were, respectively, 2 up to 100 μmol l−1, 0.36 μA l μmol−1, and 0.60 μmol l−1. The repeatability of the modified electrode evaluated in term of relative standard deviation was 4.2% for 10 measurements of 100 μmol l−1 hydrazine solution. The number of electrons involved in hydrazine oxidation (4), the heterogenous electron transfer rate constant (1.08 × 103 mol−1 l s−1), and diffusion coefficient (5.9 × 10−6 cm2 s−1) were evaluated with a rotating disk electrode.  相似文献   

16.
新型钛基镍电极对肼氧化反应的电催化活性   总被引:1,自引:0,他引:1  
A novel titanium-supported nickel electrode(Ni/Ti) was fabricated by a hydrothermal process using NiSO4 and hydrazine as raw materials. The structure of Ni/Ti was characterized by SEM and EDS. Oxidation of hydrazine on the Ni/Ti electrode in 1 mol·L-1 NaOH solution was studied with cyclic voltammograms(CV) and chronoamperometry (CA).The results show that Ni/Ti electrode was electrochemically active towards hydrazine oxidation. The high current density was recorded on the Ni/Ti electrode,and the onset potential for the hydrazine oxidation was-0.3 V as the hydrazine concentration was 70 mmol·L-1. This novel nickel electrode would be a promising anodic material used in direct hydrazine fuel cells.  相似文献   

17.
Herein, we have demonstrated a preparation of palladium nanoparticles on electroactivated graphite nanosheets modified screen printed carbon electrode (PdNPs‐EGNS/SPCE) by a simple electrochemical method. The well‐prepared electrocatalyst was potentially applied to the high performance electrocatalytic oxidation of hydrazine in neutral medium. The PdNPs‐EGNS novel composite was characterized by scanning electron microscope (SEM) and the average diameter and thickness of PdNPs and EGNS were found to be ~38 nm and 85 nm, respectively. The high performance electrocatalytic determination of hydrazine was performed by the amperometric i‐t method. The fabricated sensor displayed irreversible electrocatalytic oxidation of hydrazine with diffusion‐controlled electrode process. The oxidation of hydrazine at PdNPs‐EGNS/SPCE showed wider linear range 0.05–1415 µM and high sensitivity 4.382 µA µM?1 cm?2. The as‐prepared electrocatalyst achieved quick response towards hydrazine with a lower detection limit 4 nM.  相似文献   

18.
The electrocatalytic oxidation of hydrazine (N2H4) by TEMPOL on a glassy carbon electrode has been studied. The kinetic parameters of the electrode reaction were measured and the electrocatalytic reaction mechanism for the electrooxidation of hydrazine in the presence of TEMPOL was proposed. TEMPOL undergoes a reversible single electron transfer process at a glassy carbon electrode (GCE) at pH 1.2–8.0, and the electrochemical oxidation of N2H4 at a GCE can be catalyzed by TEMPOL. The catalytic current is affected by the concentration of catalyst and pH. The overall number of electrons involved in the catalytic oxidation of N2H4 and the number of electrons involved in the rate determining step (rds) are 4 and 1, respectively. The catalytic oxidation obeys the first-order kinetics with respect to N2H4. The proposed mechanism is consistent with the experimental data, and a cation intermediate [> N---O---N2H4+], formed by reaction of oxoammonium salt with N2H4, is involved in the reaction.  相似文献   

19.
The electrochemistry of hydrazine at platinum has been re-evaluated by an investigation using microelectrodes. Platinum oxides remaining from preceding oxidative scans results in hydrazine oxidation occurring up to ca. 400 mV more cathodic than at an oxide-free Pt electrode. The observed voltammetry at oxidised or 'activated' platinum electrodes was found to be a function of the immersion time (time since 'activation') and pH. Differences between phosphate, sulphate and acetate-based electrolytes are noted. The anodic hydrazine oxidation features at 'activated' electrodes occurred as a prewave or a prepeak, depending upon the electrolyte and scan rate employed. Although hydrazine is known to react with bulk Pt oxide, the loss of activation with time was found to be independent of hydrazine concentration and was instead a function of pH and supporting electrolyte, therefore the 'activation' corresponds to residual rather than bulk platinum oxide. The condition of platinum was examined by X-ray photoelectron spectroscopy (XPS), which demonstrated an increase in oxygen coverage with cycling and the absence of any strongly adsorbed or poisoning species. The facile oxidation of hydrazine has implications with regards to hydrogen storage, generation and fuel cells. The different effects corresponding to insufficient buffering, which has relevance to the electroanalytical detection of hydrazine, was also investigated.  相似文献   

20.
The electrochemical properties of hydrazine studied at the surface of a carbon paste electrode spiked with p‐bromanil (tetrabromo‐p‐benzoquinone) using cyclic voltammetry (CV), double potential‐step chronoamperometry and differential pulse voltammetry (DPV) in aqueous media. The results show this quinone derivative modified carbon paste electrode, can catalyze the hydrazine oxidation in an aqueous buffered solution. It has been found that under the optimum conditions (pH 10.00), the oxidation of hydrazine at the surface of this carbon paste modified electrode occurs at a potential of about 550 mV less positive than that of a bar carbon paste electrode. The electrocatalytic oxidation peak current of hydrazine showed a linear dependent on the hydrazine concentrations and linear analytical curves were obtained in the ranges of 6.00×10?5 M–8.00×10?3 M and 7.00×10?6 M–8.00×10?4 M of hydrazine concentration with CV and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 3.6×10?5 M and 5.2×10?6 M by CV and DPV methods. This method was also used for the determination of hydrazine in the real sample (waste water of the Mazandaran wood and paper factory) by standard addition method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号