首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The molecular geometries, electronic structures and stabilities of a series of alkaline-earth metal carbohydrazide perchlorates were investigated using the Heyd–Scuseria–Ernzerhof (HSE) screened hybrid density functional. The results show that Be and Mg complexes have six-coordinated octahedron features, as previously reported for the transition metal complexes. However, Ca, Sr and Ba complexes have additional coordinated oxygen atoms from the perchlorate ion. Detailed NBO analyses indicate that the metal–ligand interactions are essentially ionic and play an important role in the stabilities of these energetic complexes. The donor–acceptor interactions result in a reduction of occupancies of σC=O and σN–H bond orbitals, and also their subsequent impact on bond length and bond order.  相似文献   

2.
Dy3+ doped 40GeSe2–25Ga2Se3–35CsI (GGC) glass was synthesized, and optical spectrum, such as infrared transmission and Vis-Nir absorption was measured. Base on the Judd–Ofelt theory, the three Judd–Ofelt parameters Ωt (t = 2, 4, 6) were calculated and the results were compared with other chalcogenide glasses. The small Ω2 in GGC glass is ascribed to the weak covalency of Se–Dy bond. The theory of crystallization kinetics under non-isothermal condition was developed, and was applied to analyze this Dy3+ doped GGC glass. From the heating-rate dependence of crystallization temperature, the activation energy for crystallization E = 148 kJ/mol is obtained, and this value is much smaller than that of the undoped glass host, indicating the introduction of Dy3+ ions into the GGC glass will get the host crystallized easily.  相似文献   

3.
Two water soluble azobenzene and phthalocyanine dyads with D–π–A alignment were synthesized. It was found that both compounds showed very large molecular cubic hyperpolarizabilities which are at the order of 10−30 esu as the result of their unique chemical structure. The azobenzene moieties of these compounds, upon alternating illumination of UV and visible light, could reversibly associate with α-CD to form inclusion complexes through host–guest interaction in aqueous media, resulting in apparent influences to the 3rd NLO properties of these compounds. This influence is especially significant for the phthalocyanine whose central metal atom is copper (II). The molecular cubic hyperpolarizability γ of the inclusion complex for the copper phthalocyanine is 2.1 × 10−30 esu. When the inclusion complex dissociated under the illumination of 365 nm light, γ value increased to 4.2 × 10−30 esu, which is a 100% enhancement. Taking account of the large molecular cubic hyperpolarizabilities of these compounds, the present materials are potential as ideal 3rd NLO photoswitching systems.  相似文献   

4.
Density functional B3LYP method with 6-31++G** basis set is applied to optimize the geometries of the luteolin, water and luteolin–(H2O)n complexes. The vibrational frequencies are also studied at the same level to analyze these complexes. We obtained four steady luteolin–H2O, nine steady luteolin–(H2O)2 and ten steady luteolin–(H2O)3, respectively. Theories of atoms in molecules (AIM) and natural bond orbital (NBO) are used to investigate the hydrogen bonds involved in all the systems. The interaction energies of all the complexes corrected by basis set superposition error, are within −13.7 to −82.5 kJ/mol. The strong hydrogen bonding mainly contribute to the interaction energies, Natural bond orbital analysis is performed to reveal the origin of the interaction. All calculations also indicate that there are strong hydrogen bonding interactions in luteolin–(H2O)n complexes. The OH stretching modes of complexes are red-shifted relative to those of the monomer.  相似文献   

5.
The alkoxyl radical is an essential and prevalent reactive intermediate for chemical and biological studies. Here we report the first donor–acceptor complex‐enabled alkoxyl radical generation under metal‐free reaction conditions induced by visible light. Hantzsch ester forms the key donor–acceptor complex with N ‐alkoxyl derivatives, which is elucidated by a series of spectrometry and mechanistic experiments. Selective C(sp3)‐C(sp3) bond cleavage and allylation/alkenylation is demonstrated for the first time using this photocatalyst‐free approach with linear primary, secondary, and tertiary alkoxyl radicals.  相似文献   

6.
A variety of asymmetrically donor–acceptor‐substituted [3]cumulenes (buta‐1,2,3‐trienes) were synthesized by developed procedures. The activation barriers to rotation ΔG were measured by variable temperature NMR spectroscopy and found to be as low as 11.8 kcal mol?1, in the range of the barriers for rotation around sterically hindered single bonds. The central C?C bond of the push–pull‐substituted [3]cumulene moiety is shortened down to 1.22 Å as measured by X‐ray crystallography, leading to a substantial bond length alternation (BLA) of up to 0.17 Å. All the experimental results are supported by DFT calculations. Zwitterionic transition states (TS) of bond rotation confirm the postulated proacetylenic character of donor–acceptor [3]cumulenes. Additional support for the proacetylenic character of these chromophores is provided by their reaction with tetracyanoethene (TCNE) in a cycloaddition‐retroelectrocyclization (CA–RE) cascade characteristic of donor‐polarized acetylenes.  相似文献   

7.
The structures of 2-phenylethanol and its 1:1 water complexes have been investigated by UV–UV holeburning and IR–UV ion-dip spectroscopy, coupled with ab initio computation. The most populated molecular conformer is stabilized by an intramolecular π-type H-bond and its rotational band contours suggest the incidence of vibronic coupling involving motion of the side chain. Its 1:1 water complexes are associated with two distinct structures – water binds either as a proton donor or an acceptor. In the latter, the intramolecular H-bond is disrupted and the water molecule inserts between the OH and the aromatic ring. A second, extended anti conformer can also be detected.  相似文献   

8.
This work presents a joint theoretical and experimental characterisation of the structural and electronic properties of two tetrathiafulvalene (TTF)‐based acceptor–donor–acceptor triads (BQ–TTF–BQ and BTCNQ–TTF—BTCNQ; BQ is naphthoquinone and BTCNQ is benzotetracyano‐p‐quinodimethane) in their neutral and reduced states. The study is performed with the use of electrochemical, electron paramagnetic resonance (EPR), and UV/Vis/NIR spectroelectrochemical techniques guided by quantum‐chemical calculations. Emphasis is placed on the mixed‐valence properties of both triads in their radical anion states. The electrochemical and EPR results reveal that both BQ–TTF–BQ and BTCNQ–TTF–BTCNQ triads in their radical anion states behave as class‐II mixed‐valence compounds with significant electronic communication between the acceptor moieties. Density functional theory calculations (BLYP35/cc‐pVTZ), taking into account the solvent effects, predict charge‐localised species (BQ . ?–TTF–BQ and BTCNQ . ?–TTF–BTCNQ) as the most stable structures for the radical anion states of both triads. A stronger localisation is found both experimentally and theoretically for the BTCNQ–TTF–BTCNQ anion, in accordance with the more electron‐withdrawing character of the BTCNQ acceptor. CASSCF/CASPT2 calculations suggest that the low‐energy, broad absorption bands observed experimentally for the BQ–TTF–BQ and BTCNQ–TTF–BTCNQ radical anions are associated with the intervalence charge transfer (IV‐CT) electronic transition and two nearby donor‐to‐acceptor CT excitations. The study highlights the molecular efficiency of the electron‐donor TTF unit as a molecular wire connecting two acceptor redox centres.  相似文献   

9.
The push–pull character of a series of donor–bithienyl–acceptor compounds has been tuned by adopting triphenylamine or 1,1,7,7‐tetramethyljulolidine as a donor and B(2,6‐Me2‐4‐RC6H2)2 (R=Me, C6F5 or 3,5‐(CF3)2C6H3) or B[2,4,6‐(CF3)3C6H2]2 as an acceptor. Ir‐catalyzed C?H borylation was utilized in the derivatization of the boryl acceptors and the tetramethyljulolidine donor. The donor and acceptor strengths were evaluated by electrochemical and photophysical measurements. In solution, the compound with the strongest acceptor, B[2,4,6‐(CF3)3C6H2]2 ((FMes)2B), has strongly quenched emission, while all other compounds show efficient green to red (ΦF=0.80–1.00) or near‐IR (NIR; ΦF=0.27–0.48) emission, depending on solvent. Notably, this study presents the first examples of efficient NIR emission from three‐coordinate boron compounds. Efficient solid‐state red emission was observed for some derivatives, and interesting aggregation‐induced emission of the (FMes)2B‐containing compound was studied. Moreover, each compound showed a strong and clearly visible response to fluoride addition, with either a large emission‐color change or turn‐on fluorescence.  相似文献   

10.
The structures of several Ga2O3–In2O3–SnO2 phases were investigated using high-resolution electron microscopy, X-ray diffraction, and Rietveld analysis of time-of-flight neutron diffraction data. The phases, expressed as Ga4−4xIn4xSnn−4O2n−2 (n=6 and 7–17, odd), are intergrowths between the β-gallia structure of (Ga,In)2O3 and the rutile structure of SnO2. Samples prepared with n≥9 crystallize in C2/m and are isostructural with intergrowths in the Ga2O3–TiO2 system. Samples prepared with n=6 and n=7 are members of an alternative intergrowth series that crystallizes in P2/m. Both intergrowth series are similar in that their members possess 1-D tunnels along the b axis. The difference between the two series is described in terms of different crystallographic shear plane operations (CSP) on the parent rutile structure.  相似文献   

11.
The crystal and molecular structures of (r-2, c-4)-3-benzyl-2,4,5,5-tetraphenyl-1,3-thiazolidine are investigated showing the existence of C(sp2)–HS and C(sp2)–HN intramolecular contacts. The analysis of geometrical parameters shows that C–HS contacts may be treated as hydrogen bonds but C–HN do not fulfil the geometrical criteria of the existence of H-bonds. The B3LYP/6-311+G* single point calculations were performed to obtain wave functions applied later for ‘atoms in molecules’ (AIM) study. The analysis of bond critical points based on the Bader theory (AIM) supports the existence of intramolecular C–HS H-bonds.  相似文献   

12.
Three possible stable conformations of N-methyleneformamide were studied using Weinhold's Natural bond orbital method. Wavefunctions for the NBO analysis were obtained using B3LYP hybrid functional with 6-311+G(d,p) extended basis set. gauche conformation was predicted to be more stable than trans conformation by ≈2.3 kcal/mol in agreement with earlier studies. At the same time it was found that this preference is due to the strong πC1–N2↔πC3–O4 and σC3–H5nσN2 repulsive interactions in the planar conformations, and additional conjugative stabilization of the gauche conformation.  相似文献   

13.
The effect of solvent polarity versus specific C–HO contacts on the vibrational νC–H mode is studied using CHCl3 as a model system. Ab initio SCI–PCM calculations show that the overall shift of the νC–H band, sometimes ascribed to the C–HO hydrogen bonding, can in fact be explained by the electrostatic interaction with a dielectric environment. The presence of a new νC–H band – assigned to the C–HO bonded forms – remains as the most reliable evidence of C–HO hydrogen bonding.  相似文献   

14.
Infrared spectra of the title compounds with kröhnkite-type infinite octahedral–tetrahedral chains, K2Me(CrO4)2·2H2O (Me = Mg, Co, Ni, Zn, Cd), are presented in the regions of the uncoupled O–D stretching modes of matrix-isolated HDO molecules (isotopically dilute samples) and water librations. The strengths of the hydrogen bonds are discussed in terms of the respective OwO bond distances, the Me–water interactions (synergetic effect), the proton acceptor capability of the chromate oxygen atoms as deduced from Brown's bond valence sum of the oxygen atoms. The spectroscopic experiments reveal that hydrogen bonds of medium strength are formed in the chromates. The hydrogen bond strengths decrease in the order Cd > Zn > Ni > Co in agreement with the decreasing covalency of the respective Me–OH2 bonds in the same order, i.e. decreasing acidity of the water molecules. The infrared band positions corresponding to the water librations confirm the claim that the hydrogen bonds in K2Cd(CrO4)2·2H2O are stronger than those formed in K2Mg(CrO4)2·2H2O on one hand, and on the other—the hydrogen bonds in K2Ni(CrO4)2·2H2O are stronger than those in K2Co(CrO4)2·2H2O.  相似文献   

15.
44 members of thecompound series Ph4−nMRn (M=Si, Ge, Sn, Pb; R=o-, m-, p-Tol; n=0–4) were synthesized (15 newcompounds). The crystal structures of Ph3Sn (o-Tol) and PhSn (o-Tol)3 were determined and compared to 16 known structures. Subject to the distanced (M–C), an interplay between through-space ππ repulsion and πσ attraction leads to either elongated or compressed tetrahedral geometry. 29 Si-, 119 Sn- and 207 Pb-NMR chemical shifts were determined in solution and in the solid state. 73 Ge chemical shifts were measured only in solution. Anupfield or downfield sagging of the chemical shifts along each series is rationalized in terms of a πσcharge transfer which is constrained by torsion of the aromatic groups.  相似文献   

16.
Kimberlitic–pyropic peridotite–xenolites, probably of Jurassic–Cretaceous age, were found mixed with a younger Upper Tertiary basanitic diabase, as flow texture of plagioclase laths and ilmenite rods around those xenoliths indicated. Mafic–ultramafic rocks were crushed, sheared, and cropped along a creek about 15–18 km NE of the town of Dreikeesh, NW Syria. 40K–40Ar isotopic dating of a pure fresh black cpx sample, collected from the peridotite xenoliths, yielded an age of about 70 Ma. This age is concurrent to the time when Africa, Eurasia, and America were part of the super continent Pangaea. It also suggests that kimberlite–pyropic peridotitic rocks were located within a cratonic pipe prior to their 2000-km eastward journey (starting from the Mid-Atlantic Rift). Sampled outcrops were located within a ring of about 40 km diameter, considered to be a dome consisting of one or more clusters of kimberlitic pipes. The dome structure, mostly covered with Upper Jurassic–Cretaceous carbonate beds, was tilted westward, and rifted and sheared along its eastern edge. Tilting and crushing were accomplished after the opening of the Red Sea in the Miocene, and the counterclockwise movements of the Arabian plate, which folded the carbonate beds to form the N–S-trending Alawite mountain range along the Syrian coast. Olivine, cpx, and pyrope were the major phases in peridotite. Pyrope, including its Cr–Ni-contents, was found to be the best indicator to decipher the temperature–pressure (TP) conditions for the system. The inferred temperature was found to be about 1460 °C, at a pressure of 62 kb (around 207 km-depth). Petrographic studies revealed many zoned, resorbed, octahedral and non-metasomatized tiny grains, associated with partly to wholly metasomatized and iddingsitized olivines.  相似文献   

17.
There has been much debate about the σ‐donor and π‐acceptor properties of N‐heterocyclic carbenes (NHCs). While a lot of synthetic modifications have been performed with the goal of optimizing properties of the catalyst to tune reactivity in various transformations (e.g. metathesis), direct methods to characterize σ‐donor and π‐acceptor properties are still few. We believe that dynamic NMR spectroscopy can improve understanding of this aspect. Thus, we investigated the intramolecular dynamics of metathesis precatalysts bearing two NHCs. We chose four systems with one identical NHC ligand (N,N′‐Bis(2,4,6‐trimethylphenyl)‐imidazolinylidene (SIMes) in all four cases) and NHCewg ligands bearing four different electron‐withdrawing groups (ewg). Both rotational barriers of the respective Ru‐NHC‐bonds change significantly when the electron density of one of the NHCs (NHCewg) is modified. Although it is certainly not possible to fully dissect σ‐donor and π‐acceptor portions of the bonding situations in the respective Ru‐NHC‐bond via dynamic NMR spectroscopy, our studies nevertheless show that the analysis of the rotation around the Ru‐SIMes‐bond can be used as a spectroscopic parameter complementary to cyclic voltammetry. Surprisingly, we observed that the rotation around the Ru‐NHCewg‐bond shows the same trend as the initiation rate of a ring‐closing metathesis of the four investigated bis‐NHC‐complexes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The infrared (IR) spectrum of tetramethylammonium fluoride suggests that it contains the strongest C–HF hydrogen bonds yet observed. Ab initio 3-21G(*) calculations were used to examine potential solid state arrangements of cation about anion. The favored state is one in which four cations surround each F in a D2d arrangement and four F surround each cation. Each F acts as acceptor of four hydrogen bonds of −10.8 kcal mol−1, one from each cation. This arrangement, similar to that of tetramethylammon chloride, is consonant with the IR spectrum of the cation in solid tetramethylammonium fluoride. In the preferred form of the monomeric gas phase ion-pair F lies against one triangular face of the Td cation with three CHF hydrogen bonds of −11.5 kcal mol−1 each. Constraint of F in the gas phase ion-pair to interaction with a single cation hydrogen results in a tightly bound molecular complex between HF and trimethylammonium methylide with an interaction energy of −27 kcal mol−1; however, this structure is not seen elsewhere and apparently does not play a role in the solid salt.  相似文献   

19.
Formation of a hydrogen bond between molecules of a proton donor (phenol, pyrrole, N-methylanilines) and a solvent decreases the sensitivity of the XH stretching frequency to the polarity/polarizability of solvents. A change in the bond configuration in the amine moiety of N-methylaniline and related compounds upon formation of a solvation H complex is manifested in that the absolute terms of the solvatochromic equations for inert and protophilic media are different. The spectroscopic effect from the geometric reorganization of molecules is determined by their structure and the capability to act as hydrogen bond donors. Multicentered hydrogen bond with π bases affects the geometry of the amine fragment of N-substituted anilines to a lesser extent than does two-centered H bond with onium bases.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 4, 2005, pp. 642–649.Original Russian Text Copyright © 2005 by Vokin, Oznobikhina, Shulunova, Ustinov, Bozhenkov, Levkovskaya, Turchaninov.For communication XXV, see [1].  相似文献   

20.
We describe chemical bond changes as Franck–Condon electronic processes within a new theoretical ansatz that we call ‘rigged’ Born–Oppenheimer (R-BO) approach. The notion of the separability of nuclear and electron states implied in the standard Born–Oppenheimer (BO) scheme is retained. However, in the present scheme the electronic wave functions do not depend upon the nuclear coordinate (R-space). The new functions are obtained from an auxiliary Hamiltonian corresponding to the electronic system (r-coordinates) submitted to a Coulomb potential generated by external sources of charges in real space (α-coordinates) instead of massive nuclear objects. A stationary arrangement characterized by the coordinates α0A, is determined by a particular electronic wave function, ψ(r0A); it is only at this stationary point, where an electronic Schrödinger equation: He(r0A)|Ψ(r0A)=E0A)|Ψ(r0A) must hold. This equation permits us to use modern electronic methods based upon analytic first and second derivatives to construct model electronic wave functions and stationary geometry for external sources. If the set of wave functions {Ψ(r0A)} is made orthogonal, the energy functional in α-space, E(α;α0A)=Ψ(r0A)|He(r0A)|Ψ(r0A) is isomorphic to a potential energy function in R-space: E(R0A)=Ψ(r0A)|He(r,R)|Ψ(r0A). This functional defines, by hypothesis, a trapping convex potential in R-space and the nuclear quantum states are determined by a particular Schrödinger equation. The total wave function for the chemical species A reads as a product of our electronic wave function with the nuclear wave function (Ξik(R0A)): Φik(r,R)=Ψi(r0Aik(R0A). This approach facilitates the introduction of molecular frame without restrictions in the R-space. Two molecules (characterized with different electronic spectra) that are decomposable into the same number of particles (isomers) have the same Coulomb Hamiltonian and they are then characterized by different electronic wave functions for which no R-coordinate ‘deformation’ can possibly change its electronic structure. A bond breaking/forming process must be formally described as a spectroscopic-like electronic process. The theory provides an alternative to the adiabatic as well as the diabatic scheme for understanding molecular processes. As an illustration of the present ideas, the reaction of H2+CO leading to formaldehyde is examined in some detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号