首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The elastic properties of model suspensions with spherical monodisperse hydrophilic glass spheres that were dispersed in a Newtonian liquid were determined in creep and creep recovery measurements in shear with a magnetic bearing torsional creep rheometer. The creep and creep recovery measurements were performed depending on the applied level of shear stresses ranging from 0.19 Pa to 200 Pa. Since the recoverable creep compliances of the chosen suspending medium (i.e. a low molecular weight polyisobutylene) were far below the lower limit of the resolution of the creep rheometer it can be considered to behave as purely viscous. By applying a large shear stress in the creep tests the investigated suspensions with a volume fraction of Φ t =0.35 behave as Newtonian liquids, too. For these suspensions no significant recoverable creep compliances could be detected, as well. In contrast to the Newtonian state of suspensions at high shear stresses, where a shear induced ordering of the particles can be expected, a non-Newtonian behaviour arises by applying a very low shear stress in the creep test. In this state large recoverable creep compliances were detected for the suspensions. The magnitude of the recoverable creep compliances of the suspensions exceeded the largest creep compliances of polymer melts that are reported in the literature by more than two decades. From the results obtained by creep recovery measurements with a magnetic bearing torsional creep rheometer it can clearly be concluded that the particle structure present in the chosen model suspension gives rise to a pronounced elasticity. Received: 21 November 2000 Accepted: 12 July 2001  相似文献   

2.
3.
Finite element modeling of planar 4:1 contraction flow (isothermal incompressible and creeping) around a sharp entrance corner is performed for favored differential constitutive equations such as the Maxwell, Leonov, Giesekus, FENE-P, Larson, White-Metzner models and the Phan Thien-Tanner model of exponential and linear types. We have implemented the discrete elastic viscous stress splitting and streamline upwinding algorithms in the basic computational scheme in order to augment stability at high flow rate. For each constitutive model, we have obtained the upper limit of the Deborah number under which numerical convergence is guaranteed. All the computational results are analyzed according to consequences of mathematical analyses for constitutive equations from the viewpoint of stability. It is verified that in general the constitutive equations proven globally stable yield convergent numerical solutions for higher Deborah number flows. Therefore one can get solutions for relatively high Deborah number flows when the Leonov, the Phan Thien-Tanner, or the Giesekus constitutive equation is employed as the viscoelastic field equation. The close relationship of numerical convergence with mathematical stability of the model equations is also clearly demonstrated.  相似文献   

4.
The pom-pom rheological constitutive equation for branched polymers proposed by McLeish and Larson is evaluated in step shear strain flows. Semianalytic expressions for the shear-stress relaxation modulus are derived for both the integral and approximate differential versions of the pom-pom model. Predictions from the thermodynamically motivated differential pompon model of ?ttinger are also examined. Single-mode integral and differential pom-pom models are found to give qualitatively different predictions, the former displays time–strain factorability after the backbone stretch is relaxed, while the latter does not. We also find that the differential pompon model gives quantitatively similar predictions to the integral pom-pom model in step strain flows. Predictions from multimode integral and differential pom-pom models are compared with experimental data on a widely characterized, low-density polyethylene known as 1810H. The experiments strongly support time–strain factorability, while the multimode pom-pom model predictions show deviations from this behavior over the entire range of time that is experimentally accessible.  相似文献   

5.
  The behavior of a low-density polyethylene melt in exponential shear strain histories is examined and compared to its behavior in constant rate planar elongation. A new set of shear stress and first normal stress difference data in exponential shear are presented and used in several different material functions that have been previously proposed. Viscosities composed of principal stress differences for the two flows showed no correspondence suggesting that, contrary to previous assertions, exponential shear and constant rate planar elongation flows are fundamentally different. It is further suggested that the presence of vorticity makes exponential shear a weak, rather than strong, flow. Received: 5 March 1999/Accepted: 1 September 1999  相似文献   

6.
 Creep and recovery experiments have been used to investigate the behaviour of heat set protein gels exemplified by those prepared from β-lactoglobulin (β-Lg). Some initial experiments were also performed on heat set BSA gels to establish appropriate experimental conditions. The latter illustrated the importance of a well-controlled thermal regime and the use of an appropriate solvent trap. Results from the concentration dependence of compliance for β-Lg were in good agreement with previously published results for the long time extrapolated storage modulus, G we introduced previously, especially considering the necessarily different experimental conditions. The exponent of creep and recovery phase viscosity vs concentration was extremely high, ∼30, but reflects the nature of such gelling systems close to their critical concentration. In this respect, the behaviour of the creep phase viscosity was in qualitative agreement with our recently postulated viscosity vs concentration state diagram for a gelling system. Received: 12 July 2001 Accepted: 29 October 2001  相似文献   

7.
 The Larson-Doi (LD) polydomain model is used to simulate orientation development along the centerline of slit-expansion and slit-contraction flows of liquid crystalline polymers (LCPs). Orientation is computed using the LD structural evolution equations, subject to an imposed velocity field that accounts for the spatial variation of both shear and extension rates characteristic of this class of flows. Computed axial distributions of orientation averaged through the sample thickness are qualitatively similar to birefringence and X-ray scattering measurements of molecular orientation in similar flows of lyotropic and thermotropic LCPs. In slit-expansion flows, the simulations predict a 90 flip in orientation direction near the midplane due to transverse stretching in the expansion region. Far away from the midplane where shear gradients dominate, orientation remains primarily along the flow direction. Within the LD model, tumbling and flow aligning materials respond in a qualitatively similar manner to mixed shear and extension, although tumbling materials are systematically more susceptible to the effects of extension. Received: 22 October 1999/Accepted: 13 January 2000  相似文献   

8.
The significance of sparse long-chain branching in polyolefines towards mechanical properties is well-known. Topology is a very important structural property of polyethylene, as is molecular weight distribution. The method of Fourier-transform rheology (FTR) and melt state nuclear magnetic resonance (NMR) is applied for the detection and quantification of branching topology (number of branches per molecule), for industrial polyethylenes of various molecular weight and molecular weight distributions. FT rheology consists of studying the development of higher harmonics contribution of the stress response to a large amplitude oscillatory shear deformation. In particular, when applying large-amplitude oscillatory shear (LAOS), one observes the development of mechanical higher harmonic contributions at 3ω 1, 5ω 1,..., in the shear stress response. We correlate the relative intensity, I 3/1, and phase Φ 3 of these harmonics with structural properties of industrial polyethylene, i.e. polymer topology and molecular weight distribution. Experiments are complemented by numerical simulations, using a multimode differential Pom-pom constitutive model (DCPP formulation), by fitting to the experimental linear and nonlinear viscoelastic behaviours. Simulation results in the nonlinear regime are correlated with molecular properties of the “pom-pom” macromolecular architecture. Qualitative agreement is found between predicted and experimental FT rheology results.  相似文献   

9.
Summary  This contribution presents an efficient analytical model as well as a FE computation of the critical load, which leads to local stability failure (wrinkling) in sandwich structures. The analytical model assumes an orthotropic face layer and a thick transversely isotropic core. In the last section, a more general core material model is considered. Common core materials (foams and honeycombs) can be described with good accuracy within this model. The main advantage of the solution is the consideration of general loading conditions for the orthotropic face layer as well as in-plane deformations of the core. The results of the FE calculations and the analytical model are in good agreement with each other. Received 7 January 1999; accepted for publication 15 June 1999  相似文献   

10.
 A network model for polymer melts is presented in which disentangled strands relax under flow conditions and may rejoin the network before complete relaxation. For simplicity, we study Gaussian strands that move affinely when incorporated in the network. Network strands are created and lost according to a time constant λ. Free strands have their dynamics given by the Bird-DeAguiar model as a crude representation of reptation and the hindered rotation experienced by polymer strands in melts. The model yields a shear-thinning viscosity with overshoot in the start-up viscosity η+ (t). The double-step strain results compare well with available experimental data. Received: 10 July 2000 Accepted: 10 July 2001  相似文献   

11.
 The flow of a `model' lyotropic liquid crystal polymer, (hydroxypropyl)cellulose in water, through a rectangular channel with a divergence in the channel width, is studied by in situ light microscopy. Microscopic texture observations are related to measurements of the flow velocity field, in order to characterize the shear and elongational aspects of the flow and to examine the effects of the divergence from a narrow channel to a wide channel. A strong dependence of flow-induced texture on position in the channel is observed and is related to the interplay of shear and elongational strain. The divergence generates both a perpendicular elongational strain due to the widening of the channel, and subsequently an elongational strain along the flow direction due to the change in flow pattern from quasi-radial to unidirectional down the wide channel. Additionally side wall structure is observed to be more complex than a simple strong alignment, displaying a fine birefringent texture. Finally there is a marked dependence of the macroscopic structure on the strain history of the fluid prior to entry into the channel, indicating that very different structures of, for instance, moulded parts, can result from differences in geometry and fluid treatment prior to entry into the mould itself. Received: 12 October 1999/Accepted: 29 October 1999  相似文献   

12.
Summary  Understanding the kinetics of phase boundary movement is of major concern in e.g. martensitic transformation in related engineering applications. The main goal of this paper is to develop such kinetics on the basis of thermodynamic principles at the material microlevel. After a short literature survey in the introduction, the jump condition and thermodynamic force on the interface are discussed based on laws of conservation and thermodynamics. This leads to a relation for the driving force of the transformation front. In particular, the propagating front of a phase-transforming sphere within an elastic-plastic medium is considered. Due to density change, which is implicitly expressed in the transformation volume strain, strains and accompanying stresses are induced which hamper the propagation and influence the transformation kinetics. Together with the latent heat, the heat due to plastic dissipation occurs as a source term in the heat conduction equation. Since kinetics are influenced by temperature, the heat conduction equation and the kinetics equation are coupled. Using Green's function techniques, an integral equation is derived and solved numerically. The results of a parameter study are discussed. Received 10 February 2000; accepted for publication 18 October 2000  相似文献   

13.
Summary  This paper presents a viscoplastic model for PTFE designed to simulate numerically PTFE shaft seals. A rate-independent elastoplastic model with an endochronic flow rule is coupled in series with a rate-dependent Kelvin model, which has a highly nonlinear damper. In contrast to previous models for PTFE, this unified approach is suitable for numerical simulation of the loading and the stress relaxation behaviour at ambient temperature. Received 30 October 2001; accepted for publication 21 January 2002  相似文献   

14.
A three-parameter model describing the shear rate-shear stress relation of viscoelastic liquids and in which each parameter has a physical significance, is applied to a tangential annular flow in order to calculate the velocity profile and the shear rate distribution. Experiments were carried out with a 5000 wppm aqueous solution of polyacrylamide and different types of rheometers. In a shear-rate range of seven decades (5 10–3 s–1 < < 1.2 105 s–1) a good agreement is obtained between apparent viscosities calculated with our model and those measured with three different types of rheometers, i.e. Couette rheometers, a cone-and-plate rheogoniometer and a capillary tube rheometer. a physical quantity defined by:a = {1 – ( / 0)}/ 0 (Pa–1) - C constant of integration (1) - r distancer from the center (m) - r 1,r 2 radius of the inner and outer cylinder (m) - v r local tangential velocity at a distancer from the center (v r = r r) (m s–1) - v 2 local tangential velocity at a distancer 2 from the center (m s–1) - shear rate (s–1) - local shear rate (s–1) - 1 wall shear rate at the inner cylinder (s–1) - dynamic viscosity (Pa s) - a apparent viscosity (a = / ) (Pa s) - a1 apparent viscosity at the inner cylinder (Pa s) - 0 zero-shear viscosity (Pa s) - infinite-shear viscosity (Pa s) - shear stress (Pa) - r local shear stress at a distancer from the center (Pa) - 0 yield stress (Pa) - 1, 2 wall shear-stress at the inner and outer cylinder (Pa) - r local angular velocity (s–1) - 2 angular velocity of the outer cylinder (s–1)  相似文献   

15.
 We have studied by in situ microscopy the flow of a lyotropic liquid crystal polymer, hydroxypropylcellulose (HPC) in water, around an obstacle placed in a rectangular flow channel. The obstacle separates the flow into two parts which rejoin downstream of the obstacle, resulting in the formation of a `weld-line'. Measuring the velocity field in the vicinity of the weld-line beyond the obstacle, we find as expected a positive elongational strain (acceleration) along the weld (parallel to the flow direction). For an anisotropic (concentrated) HPC solution we observe in addition a significant shear strain in the weld-line region, there being an important velocity gradient perpendicular to the plane of the weld line. Isotropic (lower concentration) solutions of the same polymer demonstrate no visible weld line, a larger elongational strain rate near the obstacle, and no shear component of strain downstream of the obstacle. These results are similar to observations reported for fluids reinforced by macroscopic fibres. Polarised light observations of the anisotropic solution show that the strain field generates a generally increased degree of orientation of the liquid crytalline polymer near the weld (generally reduced crossed-polariser transmitted intensity when the polariser is parallel to the flow direction), however there is also a striking fine birefringent colour variation in the weld-line region, reminiscent of the structure observed at the channel side walls in rectangular channel flow (Haw and Navard 2000). The results show that the simple concept of weld-line structure as confined to an enhanced alignment along the weld due to elongational strain is incomplete; the two-dimensional shear strain field must also be taken into account for the anisotropic fluid. Received: 22 December 1999/Accepted: 4 January 2000  相似文献   

16.
 The stress-optical rule relates birefringence to stress. Consequently, measurement of flow birefringence provides a non-intrusive technique of measuring stresses in complex flows. In this investigation we explore the use of an axisymmetric geometry to create a uniaxial elongational flow in polymer melts. In axisymmetric flows both birefringence and orientation angle change continuously along the path of the propagating light. The cumulative influence of the material's optical properties along the light's integrated path makes determination of local birefringence in the melt impossible. One can nevertheless use birefringence measurements to compare with predictions from computer simulations as a means of evaluating the constitutive equations for the stress. More specifically, in this investigation we compare the light intensity transmitted through the experimental set-up vs entry position, with the theoretically calculated transmitted intensity distribution as a means of comparing experiment and simulation. The main complication in our experiments is the use of a flow cell that necessarily consists of materials of different refractive indices. This introduces refraction and reflection effects that must be modeled before experimental results can be correctly interpreted. We describe how these effects are taken into account and test the accuracy of predictions against experiments. In addition, the high temperatures required to investigate polymer melts mean that a further complication is introduced by thermal stresses present in the flow cell glass. We describe how these thermal-stresses are also incorporated in the simulations. Finally, we present some preliminary results and evaluate the success of the overall method. Received: 2 April 2001 Accepted: 27 August 2001  相似文献   

17.
超声速流动中非线性EASM湍流模式应用研究   总被引:1,自引:0,他引:1  
针对超声速复杂流动区域精确模拟的需要,发展了基于k-ω可压缩修正形式的非线性显式代数雷诺应力模式(EASM),提高了该模式对超声速复杂流动的数值模拟精度。通过对二维超声速凹槽和三维双椭球的数值计算表明,与SA和SST常规线性涡黏性湍流模式比较,非线性的EASM模式对大分离以及剪切层流动结构的刻画能力更精细,对剪切层再附区的压力及摩擦系数分布模拟更加精确;EASM模式能够准确地模拟二次激波引起的压强和热流分布情况。  相似文献   

18.
 We investigate and compare the mechanical properties of two micellar cubic crystals. Both are obtained from aqueous triblock-copolymer solutions of similar block structure, (PEO)76(PPO)29(PEO)76 and (PEO)127(PPO)48(PEO)127, designated Pluronic F68 and F108 respectively. Extensive small angle X-ray scattering experiments under shear and common rheometry provide the following results: (i) the solid phases of the two polymeric solutions are constituted of micelles that are ordered in a bcc (F68) and fcc (F108) structure. The overall appearance of both unsheared samples is polycrystalline; (ii) SAXS showed that both systems undergo a structural reorientation under shear, with the dense planes arranged parallel to the velocity - vorticity plane, thus facilitating flow; (iii) F68 showed a clear transition in the flow curve, associated with a textural change, but the F108 system exhibited a continuous evolution; (iv) the bcc crystal appears to have no measurable yield stress and flows even for low applied stresses. This was in contrast to the fcc sample which showed a clear yield stress, separating creep and flow regimes. Received: 30 November 1999/Accepted: 30 November 1999  相似文献   

19.
 The flow of isotropic and liquid crystalline (LC) hydroxypropylcellulose (HPC) aqueous solutions into an abrupt axisymmetric contraction has been quantitatively measured by pulsed-field-gradient NMR techniques. Steady-state axial velocity profiles, acquired upstream of the contraction, reveal a large contraction entry length for the LC solution. This entry flow field exists over an order of magnitude change in flow rate and is attributed to elasticity that is associated with polydomain liquid crystallinity. Pronounced, off-centerline velocity maxima (in an axisymmetric flow field) were present upstream of the contraction, in the entry flow region. Apparently, a more viscous and elastic core of fluid was present along the centerline; this fluid resisted elongational strain more than the fluid closer to the walls. Quantitative velocity profiles were extracted from displacement distributions and corrected for elongational dispersion. The isotropic solution velocity profiles matched those obtained from viscoelastic simulations using an approximate Doi-Edwards model, parameterized with independent rheological data. Received: 29 April 1999/Accepted: 30 August 1999  相似文献   

20.
Summary  Constitutive equations are derived for the viscoelastic and viscoplastic behavior of amorphous glassy polymers at isothermal loading with small strains. The model is based on the trapping concept: a disordered medium is treated as an ensemble of plastic flow units (with the characteristic size of micrometers), which, in turn, consist of a number of cooperative rearranging regions (with the characteristic length of nanometers). The viscoelastic response is described by rearrangement of relaxing regions, whereas the viscoplastic behavior is modeled as irreversible deformation of plastic units. Adjustable parameters are found by fitting observations for aromatic polyesters, nylon-66, polycarbonate block copolymers and an epoxy glass. Fair agreement is demonstrated between experimental data and results of numerical simulation. Received 17 November 1999; accepted for publication 23 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号