首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TNT高温热解及含碳团簇形成的反应分子动力学模拟   总被引:1,自引:0,他引:1  
ReaxFF-MD模拟三硝基甲苯(TNT)高温热解显示增加了伦敦耗散力项(Elg)的ReaxFF/lg 势函数在含能材料平衡密度计算方面具有优越性. 产物识别分析得出TNT热解的主要产物为NO2、NO、H2O、N2、CO2、CO、OH以及HONO,且最终产物为H2O、N2和CO2. 使用ReaxFF势函数模拟同样过程进行比较性分析显示,在主要产物和最终产物方面与ReaxFF/lg 作用结果具有一致性,但在化学反应动力学方面表现出一些差异. ortho-NO2键断裂和C―NO2→C―ONO重排布-断裂形成NO2和NO是TNT热解的主要初级反应,且前者产生速率大于后者,NO2和NO形成后很快参与次级反应并最终形成N2. 高温热解中形成OH等小分子会促进H2O的形成. 环上基团相互反应或直接脱落后,主环间C―C键才发生断裂,但温度升高会加快主环断裂,并进一步分解形成CO2,这也是高温条件下CO2分布产生波动的一个重要原因. 并且当晶胞中的TNT分子几乎完全分解时,系统的势能开始明显衰减. 与温度相比,密度对热解中最大含碳团簇形成的影响更明显. 并且,模拟结果显示,在TNT完全分解前已经出现含碳中间体的聚合现象. 此项工作表明使用ReaxFF/lg 反应力场研究TNT高温热解可以提供具体的动力学和化学方面的信息,并有助于理解含能材料的爆轰问题并可进行安全评估.  相似文献   

2.
本文采用ReaxFF反应分子动力学方法,研究了RDX及其衍生物晶体在高温条件下(2000、2500和3000 K)的热分解机理以及主要产物随时间的变化情况。结果表明:RDX及其衍生物晶体热解的第一步反应均为N―NO_2键断裂生成NO_2分子,随后反应由于六元环上和侧链基团的不同导致侧链脱除或开环反应的顺序不同。在这四种单胞体系热解中,NO_2和NO分子为共同的中间产物,形成之后迅速发生次级反应并最终生成N_2。各体系热解终产物一致,均为N_2、H_2O和CO_2,其中N_2分子数最多,大于20个。由于原始分子结构和组成中C/N比、H/O比的不同,各体系热解后H_2O和CO_2分子数目相差较大。不同温度下,各单胞体系热分解生成的最大含碳团簇中C原子数均较小。在进一步超胞体系的模拟中,RDX和RDX-D2体系生成的含碳团簇中C原子数分别达到约30和16个,远高于单胞模拟,且受温度影响较大;而RDX-D1和RDX-D3单胞或超胞模拟结果相近,均未生成含碳团簇,仅存在小分子含碳碎片。因此,初始分子的结构和元素比对含碳团簇的生成有明显影响。  相似文献   

3.
为探究固相CL-20热分解反应机理,本文采用反应分子动力学ReaxFF MD模拟研究了含有128个CL-20分子的超胞模型在800–3000 K温度下的热分解过程。借助作者所在课题组研发的反应分析及可视化工具VARxM D得到了热分解过程中多种反应中间物和较为全面的反应路径。氮氧化物是CL-20初始分解的主要中间产物,其中NO_2是数量最多的初始分解产物,观察到的中间物NO_3的生成量仅次于NO_2。统计CL-20初始分解的所有反应后发现,在所有考察温度下CL-20初始分解路径主要是N―NO_2断裂反应和C―N键断裂引起开环的单分子反应路径。N―NO_2断裂反应数量在高温下显著增多,而C―N键断裂引起的开环反应数量随温度升高变化不大。在低温热分解模拟中还观察到CL-20初始分解阶段生成的NO_2会发生双分子反应—从CL-20分子中夺氧生成NO_3。对CL-20热分解过程中环结构演化进行分析后发现,CL-20分解的早期反应中间物主要为具有3元或2元稠环结构的吡嗪衍生物,随后它们会分解形成单环吡嗪。吡嗪六元环结构在热分解过程中非常稳定,这一模拟结果支持Py-GC/MS实验中提出吡嗪存在的结论。CL-20中的咪唑五元环结构相对不稳定,在热分解过程中会发生开环分解而较早消失。由ReaxFF MD模拟得到的3000 K高温热分解产物N_2,H_2O,CO_2和H_2的数量与爆轰实验的测量结果定量吻合。本文获得的对CL-20热分解机理的认识表明ReaxFF MD结合VARxM D有可能为深入了解热刺激下含能材料复杂化学过程提供一种有前景的方法。  相似文献   

4.
在CCSD(T)/6-311G(d,p)//MP2/6-311G(d,p)+ZPE水平上对反应HCCO+NO2进行了计算, 建立了反应势能面. 此反应由反应物通过三步反应到达产物. 首先, NO2的O原子进攻HCCO自由基中与H相邻的C原子, 形成异构体1[ONOC(H)CO]或2[H(CONOC)O]. 然后, 异构体1和2通过N-O键的断裂形成产物NO和OC(H)CO. 最后, 产物中的OC(H)CO可以通过C-C键的断裂进一步分解为HCO和CO. 由HCCO+NO2反应得到产物NO+HCO+CO.  相似文献   

5.
刁智俊  赵跃民  陈博  段晨龙 《化学学报》2012,70(19):2037-2044
采用ReaxFF动力学方法模拟了非交联固化环氧树脂在不同温度和升温速率下的热解特性. 结果表明, 含N和含O桥键的断裂是热解的引发反应. 观察到H2O的4种主要的生成途径, 而这些反应途径都涉及到含羟基的前驱体. 当反应温度较低时, H2O为热解的主要产物. 而在高温条件下, 热解的主要产物为H2, 它主要为分子内/分子间脱氢反应和氢自由基的夺氢反应的产物; 高温同时促进了含石墨烯结构且分子量较大的碳团簇的形成. 除此之外, 还观察到了CH4, HCN, NH3和CO等小分子产物. 本文用ReaxFF动力学方法模拟所得的气体产物以及含类似石墨烯结构的碳团簇与实际实验结果一致, 说明ReaxFF动力学方法能为从分子水平上研究有机物高温热解反应提供了一种有效的途径.  相似文献   

6.
任春醒  李晓霞  郭力 《物理化学学报》2018,34(10):1151-1162
为探究固相CL-20热分解反应机理,本文采用反应分子动力学ReaxFF MD模拟研究了含有128个CL-20分子的超胞模型在800–3000 K温度下的热分解过程。借助作者所在课题组研发的反应分析及可视化工具VARxMD得到了热分解过程中多种反应中间物和较为全面的反应路径。氮氧化物是CL-20初始分解的主要中间产物,其中NO2是数量最多的初始分解产物,观察到的中间物NO3的生成量仅次于NO2。统计CL-20初始分解的所有反应后发现,在所有考察温度下CL-20初始分解路径主要是N―NO2断裂反应和C―N键断裂引起开环的单分子反应路径。N―NO2断裂反应数量在高温下显著增多,而C―N键断裂引起的开环反应数量随温度升高变化不大。在低温热分解模拟中还观察到CL-20初始分解阶段生成的NO2会发生双分子反应—从CL-20分子中夺氧生成NO3。对CL-20热分解过程中环结构演化进行分析后发现,CL-20分解的早期反应中间物主要为具有3元或2元稠环结构的吡嗪衍生物,随后它们会分解形成单环吡嗪。吡嗪六元环结构在热分解过程中非常稳定,这一模拟结果支持Py-GC/MS实验中提出吡嗪存在的结论。CL-20中的咪唑五元环结构相对不稳定,在热分解过程中会发生开环分解而较早消失。由ReaxFF MD模拟得到的3000 K高温热分解产物N2,H2O,CO2和H2的数量与爆轰实验的测量结果定量吻合。本文获得的对CL-20热分解机理的认识表明ReaxFF MD结合VARxMD有可能为深入了解热刺激下含能材料复杂化学过程提供一种有前景的方法。  相似文献   

7.
1CH2+N2O反应的势能面   总被引:2,自引:0,他引:2  
利用密度泛函理论(B3LYP)计算了1CH2+N2O反应的反应物、中间体、过渡态及产物 的几何构型.进而用从头算方法(QCISD(T))计算了单点能量.由此描绘了反应的势能面, 确定了反应的最终产物通道为N2+H2CO和NO+HCN+H.后者比前者有更大的分支比.N2、H2CO 、NO、HCN的存在有待于实验检测.作者认为,反应在室温下是加成-消除机理,而在高温下 可以通过直接取代的机理获得N2+H2CO.  相似文献   

8.
采用密度泛函理论(DFT)研究了NOx/CO2/H2O在BaO(001)表面不同覆盖度下的吸附情况.计算表明NO以N端吸附在表面氧位,形成NO22-吸附物种;CO2以C端吸附在表面氧位,形成表面CO32-;而H2O在表面发生解离吸附,导致BaO表面的羟基化.NO2有两种主要的吸附模式:以N端吸附在表面氧位,或以O端吸附表面Ba位.各物种在表面的吸附顺序为:NO≈H2O相似文献   

9.
 通过单位键指标-二次指数势(UBI-QEP)方法估算反应的表观活化能进行反应机理的随机模拟,并结合实验结果研究了富氧条件下Pd基催化剂上H2还原NO的反应. 结果表明,反应的控制步骤是H2吸附活化产生H*(*表示活性位,H*表示吸附的H原子)的过程,当反应温度低于270 ℃时, H*来自基元反应O*+H*2OH*+H*,反应温度上升到310 ℃时, H*2+*2H*成为H*的主要来源. NO以(NO)*2的形式吸附在Pd催化剂表面,还原产物N2O来自两条途径,分别是(NO)*2的分解以及相邻的两个NO*分子之间的结合; N2主要来自N2O*的分解以及相邻的N*和NO*分子的结合; NH3则由中间产物HNO*经过逐步加氢生成. 富氧条件下, NO和O2之间存在吸附和反应的竞争,低温下NO在Pd表面的吸附几率远大于O2, 此时H2优先还原NO. 反应温度的升高导致各物种的吸附能力下降,其中NO的降低最明显,因此高温下催化剂表面的主要吸附物种由NO变为O2, 此时H2优先与O2反应. 在150~310 ℃范围内,实验结果和模拟数据非常吻合.  相似文献   

10.
 通过单位键指标-二次指数势方法(UBI-QEP)进行能学数据计算以及随机模拟,并结合实验结果,研究了无氧条件下反应温度对Pd基催化剂上H2还原NO的反应产物分布的影响. 结果表明, NO以(NO)*2(*表示活性位, (NO)*2表示吸附的(NO)2分子)的形式吸附在Pd催化剂表面参与反应. 还原产物N2O来自两条途径,分别是(NO)*2的分解和相邻NO*分子的结合; N2来自N2O*的分解; NH3则由(NO)*2与H*反应形成中间产物HNO*, 继而逐步加氢产生. 随着反应温度的升高,Pd催化剂表面H*的覆盖度随之下降, H2还原NO反应的控制步骤相应改变,产物的选择性也随之变化. 在70~310 ℃的反应温度区间,模拟数据和实验结果非常吻合,低温下主要进行(NO)*2分解产生N2O*的反应,还原产物以N2O为主; 高温下主要进行(NO)*2加氢产生HNO*的反应,还原产物以NH3为主; 受此影响, N2的选择性先增加后减少,峰值小于50%. 据此提出了反应机理的网络模型图.  相似文献   

11.
以PU改性乙烯基树脂(polyurethane/vinyl ester resin,PU/VER)为研究对象,通过反应分子动力学(reactive force field,Reax FF)力场仿真分析,从原子层面揭示其在不同反应温度下的高温裂解微观特性.对含有1395个原子的体系进行仿真计算,该体系以不同的速度升温至2800~4800 K的反应温度.结果表明,PU改性所产生的O—O键最先断裂,将含C—N键的支链部分与主链分开;主链中氧桥键O—C在支链上C—N键断裂之后发生的断裂是乙烯基树脂主链断裂的主要原因,由此引发的链式反应最终导致高分子链解聚;位于主链端部的乙烯基(H2C=CH—)由于碳碳双键的解离能较高,其在3种主要的热解产物H2、CO2和C2H2的生成过程中均有参与.本文采用Reax FF动力学方法模拟得到的小分子气体产物及其生成路径与实际试验结果相一致,这说明Reax FF动力学方法是一种阐释有机高分子化合物热解化学反应机理的有效方法.  相似文献   

12.
奥克托金(HMX)的T-Jump/FTIR快速热裂解研究   总被引:1,自引:0,他引:1  
采用T-Jump/FTIR快速热裂解原位红外光谱联用技术研究了奥克托金(HMX)在0.1,0.2,0.3和0.4MPa的Ar气条件下,以1000℃·s-1的升温速率快速升温至设定的反应温度,用快速扫描傅立叶变换红外光谱跟踪分析分解产物的种类和相对摩尔浓度的变化,研究了温度及压力对初始检测产物的影响.结果表明,HMX在快速热裂解5s过程中红外所检测到的主要气相产物为CO,CO2,NO,NO2,N2O,HCONH2,CH2O,H2O,HNCO及HCN,并给出了这些产物相对摩尔浓度随时间变化的曲线.根据气体产物相对摩尔浓度的比率N2O/HCN,研究了压力和反应温度对HMX的快速热裂解过程及机理的影响,认为在低温HMX分解的C—N键断裂在两竞争反应中占优,通过压力的变化证明了气相产物之间存在二次反应.  相似文献   

13.
芥子气模拟剂2-氯乙基乙基硫醚的光催化降解   总被引:4,自引:0,他引:4  
利用连续流动微反、原位红外和GC/MS等手段考察了芥子气模拟剂2-氯乙基乙基硫醚(2-CEES)在P25 TiO2上的光催化降解反应,证实CO2和H2O是这个反应的最终产物.详细的跟踪分析表明,除了CO2和H2O外,在反应的气相混合物中可检测到C2H4、CH3CHO、CH4、CO、HCl和H2S;少量小分子的羧酸、醚和砜;微量C2H5SC2H5、C2H5S2C2H5、C2H5SC2H4Cl和CH2ClCH2Cl等中间产物;在反应后的催化剂表面可检测到C2H5S2C2H5、C2H5SC2H4OH、C4H9S2C2H5和C2H5S2C2H4OH、等物.根据这些结果提出了2-CEES光催化降解的反应机理,推断2-CEES的光催化降解涉及脱氯、C-S键断裂、有机硫化物光聚合和裂解等复杂过程最终转化为CO2和H2O.认为各种硫物种在表面的积聚引起了催化剂的缓慢失活.  相似文献   

14.
介质阻挡放电引发氮氧化物等离子体化学反应   总被引:3,自引:0,他引:3  
在523 K介质阻挡放电条件下,研究了不同气体组分体系中NO的转化.实验表明,在无氧体系(NO/N2)中,转化的NO主要分解为N2和O2.在富氧(NO/O2/N2)条件下,由于NO和NO2的生成, NO的转化率最低.体系中加入C2H4(NO/C2H4/N2)时, NO转化率与NO/N2体系几乎一样,与NO相比,生成的O更易与C2H4作用,几乎没有NO2的生成.当C2H4和O2共存时(NO/O2/C2H4/N2),NO主要被氧化为NO2.当能量密度为125 J•L-1时, 与其它体系相比,NO/O2/C2H4/N2体系中NO转化率和NO2生成量最大,转化每个 NO分子能耗最小(61 eV).体系中C2H4主要被氧化为CO.四个体系中N2O的生成量都较少.讨论了介质阻挡放电条件下上述四个体系可能的反应机制.  相似文献   

15.
NO_2,OH和OH~-对环四甲撑四硝胺初始热解的影响   总被引:1,自引:0,他引:1  
在密度泛函理论的(DFT)B3LYP/6-31g(d)水平上,优化得到了环四甲撑四硝胺(β-HMX)及其与高氯酸铵(AP)裂解产物NO2、OH及OH-分别形成复合物的各种稳定构型,计算了β-HMX及各复合物中最弱的N—NO2键解离能.结果发现:β-HMX与NO2、OH结合后构型变化不是很大,但对称性降低;β-HMX与OH-结合后,HMX构型发生较大变化,原有的对称性明显遭到破坏.计算表明:NO2易与HMX骨架环上亚甲基(—CH2—)中的H作用,"置换"出H而引发HMX的热解,从而改变了HMX的初始分解通道;OH对HMX的N—NO2键解离影响不大,而OH-与β-HMX结合后其N—NO2键解离能比β-HMX降低近200kJ.mol-1,表明OH-对其裂解有明显的促进作用.NO2、OH-的存在可使HMX的分解温度大大降低.  相似文献   

16.
在CCSD(T)/B3LYP/6-311G(d,p)//B3LYP/6-311G(d,p)+ZPE水平上对反应HCNO+OH进行了计算,建立了反应势能面,对反应中涉及到的6个中间体和12个过渡态都做了详尽的分析.详细阐明了理论上可能得到的7种产物:P1为H2O+CNO,P2为HCO+HNO,P3为HO2+HCN,P4为HONH+CO,P5为H2CO+NO,P6为H2NO+CO和P7为H2O+OCN,以及形成这些产物的各种反应通道.其中最主要通道为由反应物形成反式初始复合物,再连续经过2次1,3-氢迁移最终形成产物HONH+CO,该通道是一条热力学可行的反应通道.并且从反应物、中间体和产物的相对能量来看,此反应是典型的消除型反应.另外,直接的氢提取反应也是比较重要的反应通道.  相似文献   

17.
建立合理有效的烟煤大分子模型,采用基于反应力场(Reactive Force Field,ReaxFF)的分子动力学方法模拟1400-2600 K典型烟煤的热解过程,得出产物分布和中间自由基的演变历程。研究表明,随着热解温度的升高,焦炭产量先增加后降低,焦油产量的变化趋势与焦炭相反,热解气产量单调增加。煤在低温下热解主要发生一次反应,生成焦油自由基碎片和小分子气体;高温下焦油碎片的二次反应显著,生成含量较多但数量较少的焦炭及含量与数量较多的小分子气体。2000 K是一次反应向二次反应的温度转折点。在高温热解时,煤中的C与H逐渐迁移到焦炭和焦油中,而含氧官能团较为活跃,O逐渐迁移到热解气中。二次反应阶段,O最活泼,H次之,C最稳定。热解过程中最先产生的气体是H2O; NH3主要来源于二次反应; H2S在二次反应阶段被消耗转化为其他产物; H2产量最多,且随热解温度升高而增加,尤其在二次反应中大量生成,主要源于裂解产生的氢自由基碰撞和芳香结构的缩合。基于ReaxFF模拟结果得到煤热解失重活化能为39. 45 k J/mol。  相似文献   

18.
 采用预处理-瞬态反应产物分析方法定量研究了Co-ZSM-5催化剂上乙烯选择性催化还原氮氧化物反应过程中表面中间物种的组成. 催化剂在275 ℃经0.1%NO-0.05%C2H4-10%O2/Ar混合气处理后生成了表面中间物种NCaObHc, 该物种与NO/O2/Ar混合气反应比与单独的NO或O2反应生成更多的N2. 通过质谱、红外吸收四组分 (CO2, CO, CH4和N2O)分析仪及气相色谱-质谱联用等技术分析了表面中间物种与NO/O2/Ar混合气反应的产物,确定了表面中间物种中三种元素N, C和H的平均原子数之比为1.0∶1.8∶5.0 (氧物种由于实验原因很难确定).  相似文献   

19.
2,4-二硝基咪唑铅配合物Pb(DNI)2(H2O)4的热分解   总被引:4,自引:0,他引:4  
应用TG, TG-DSC-FTIR-MS联用技术和热裂解原位RSFT-IR技术研究了2,4-二硝基咪唑铅(PDNI)的热分解机理. 结果表明, PDNI在102 ℃附近脱除分子内配位水, 生成Pb(DNI)2; 在284 ℃附近C—NO2断裂, 生成NO2, 咪唑环开环, 伴随发生强烈的氧化放热反应, 生成CO2, N2O和铅盐与咪唑残余基团形成的复杂混合物或多聚烃类化合物; 在300~400 ℃范围内, PDNI继续缓慢分解, 生成CO2, N2O和Pb[NCO]2; 升温至410 ℃以上, PDNI分解生成CO和Pb[CN]2.  相似文献   

20.
利用三缺位Keggin型杂多酸[A-α-PW9O34]9-和[(FeШ(OH2)2)3(A-α-PW9O34)2]9-的四丁基铵盐做为催化剂,H2O2做为氧化剂催化环己烯氧化反应. 考察了反应时间、H2O2与环己烯的摩尔比,催化剂的用量等因素对反应结果的影响. 结果表明:在1, 2-二氯乙烷为10 mL,H2O2 (30 %)与环己烯的摩尔比为2,反应温度为35 oC,反应时间为6 h,[(C4H9)4N]9[A-α-PW9O34]为催化剂的条件下,环己烯氧化反应的转化率为55 %,主要产物是环氧环己烷,其选择性 ≥ 99 %;而以[(C4H9)4N]9[(FeШ(OH2)2)3(A-α-PW9O34)2]为催化剂时环己烯氧化反应的转化率17 %,主要产物是2-环己烯-1-酮,选择性 ≥ 99 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号