首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以三价铁盐为铁源,采用多元醇还原法在低温下制备出了具有不同长径比的棒状LiFePO4材料. 通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、循环伏安(CV)、交流阻抗谱(EIS)和恒电流充放电测试等手段分析了不同回流反应时间下制备出的前驱体和最终的LiFePO4/C 样品. 结果表明:回流反应时间对LiFePO4的形貌和特性有明显的影响. 通过把回流反应时间从4 h延长至16 h,材料的形貌由不规则的短棒状颗粒变为规则的长棒状颗粒,且棒的直径明显变小. 当回流反应时间为10 h 时,样品复合了多种形貌,有利于电子的传输,在低倍率下具有优秀的性能,0.1C放电比容量为163 mAh·g-1;当回流反应时间为16 h 时,样品具有最大的长径比,有利于锂离子的扩散,在高倍率下具有良好的性能,1C、3C、5C、10C、20C倍率下放电比容量分别为135、125、118、110、98 mAh·g-1,循环性能良好,几乎无衰减.  相似文献   

2.
以三甘醇为还原剂,Li2CO3和三价铁源FePO4为原料,通过多元醇还原法在低于300℃下直接制备了结晶良好的纯相LiFePO4,无须后续热处理。0.1C首次放电比容量为140.5mAh·g-1。为了进一步改善纯相LiFePO4的电导率,以聚乙烯醇为碳源,在700℃下热处理进行了碳包覆改性,获得了LiFePO4/C复合正极材料。合成的LiFePO4/C在0.1C下放电容量为155mAh·g-1,5C倍率下放电比容量保持在125mAh·g-1,具有很好的倍率性能和循环稳定性。  相似文献   

3.
以LiH2PO4和廉价的Fe2O3为原料,葡萄糖为有机碳源,通过选择高价V5+进行铁位掺杂固相合成碳包覆复合改性的LiFe1-xVxPO4/C(x=0,0.01,0.03,0.05,0.07,0.1)材料。700℃下处理得到结晶性好、电化学性能良好、较高振实密度ρ=1.2 g·cm-3的材料。X射线光电子能谱(XPS)测试结果表明掺入的钒为高价态V5+,能产生更多的过剩电子,从而提高了电子电导率,且V5+的掺入没有改变Fe的价态。交流阻抗测试结果进一步证明了V5+的掺入降低了电荷迁移阻抗,提高了材料的电子电导率。其中优化的材料LiFe0.95V0.05PO4显示了不同倍率下良好的充放电比容量,在0.1C、1C、2C和5C倍率的放电比容量分别为155、146.5、135.3和125.9 mAh·g-1,5C循环500次后容量为119.5 mAh·g-1,容量保持率为94.9%,材料循环性能较好,具有良好的实际应用价值。  相似文献   

4.
模板法合成有孔的锂离子电池正极材料LiFePO_4/C   总被引:2,自引:2,他引:0  
<正>橄榄石型LiFePO4因其具有170mAh·g-1的理论容量,3.4V的放电平台,良好的循环性能和热稳定性能,无毒和价格低廉等优点,自1997年被Goodenough等[1]首次报道以来受到人们广泛关注[2-3],并被认为在动力电池应用上极有潜力[4]。但此材料的电导率低及扩散性能差[1],限制其大规模应用。针对上述缺点研究人员对LiFePO4的改性研究主要包括:包覆碳[5-7]和金属粉末[8]、掺杂金属离  相似文献   

5.
以LiH2PO4和还原铁粉为原料,通过机械液相活化法获得了棒状形貌的[Fe3(PO4)2·8H2O+Li3PO4]前驱体,然后在三甘醇(TEG)介质中采用多元醇工艺制备了LiFePO4材料.为提高其电导率,以聚乙烯醇(PVA)为碳源,对纯相LiFePO4进行碳包覆改性.通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒电流充放电和电化学阻抗谱(EIS)等测试方法对制备的材料进行了表征.结果表明:采用机械活化辅助多元醇法可在低温下合成结晶良好的LiFePO4,碳包覆改性的LiFePO4/C材料导电性能得到改善,电荷转移阻抗减小,1C、2C倍率下放电容比量分别为139.8、129.5mAh·g-1,具有良好的倍率性能和循环稳定性.  相似文献   

6.
以乙酸锂、草酸亚铁、磷酸二氢铵为原料,利用微波法制备出锂离子正极材料磷酸亚铁锂,同时在不同的时间下研究其对反应物合成的影响.用X射线衍射技术、扫描电子显微镜等对产品的晶体结构进行表征,结果表明:微波合成法具有反应时间短、能耗小、合成效率高等优点,其合成的磷酸亚铁锂的晶体结晶度较好、粒度分布较均匀、晶粒比较完整;同时也证实了微波合成是一种比较好的合成方法.  相似文献   

7.
纳米级LiFePO_4材料的水热模板法合成及其性能研究   总被引:1,自引:0,他引:1  
采用水热模板法合成纳米级LiFePO4材料,改变水热反应中表面活性剂(十六烷基三甲基溴化铵)的比例控制样品颗粒生成的大小.SEM测试表明,合成的LiFePO4晶粒尺寸与表面活性剂的配比密切相关,范围在几十到几百nm之间.充放电试验表明,合成的纳米级LiFePO4材料电极具有优良的电化学性能,其0.1C放电最高比容量可达150 mAh/g,而1C和2C放电比容量也分别有140 mAh/g和126 mAh/g.  相似文献   

8.
采用溶剂热法,以乙二醇为溶剂,P123为软模板剂,制备了锂离子电池正极材料磷酸铁锂(LiFePO4),其振实密度约为1.2g·cm-3。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)和BET对样品的成分、晶型,形貌和孔结构进行了表征。结果表明:鸟巢状LiFePO4由单晶纳米片组成,具有开放的三维多孔分级结构。通过时间单因素实验探讨鸟巢状分级结构LiFePO4的生长机理,其生长过程可以概括为:成核——定向生长——团聚——定向生长。电化学性能测试结果表明材料在0.1C倍率下充放电时,其首次放电比容量达132.5 mAh·g-1。  相似文献   

9.
张鹏  孔令斌  罗永春  康龙 《电化学》2012,(4):337-341
本文采用碳热还原法,以廉价的FeCl3.6H2O、LiOH.H2O和NH4H2PO4为原料,以淀粉为还原剂和碳源,经600℃烧结制备了LiFePO4/C复合材料,方法重现性好且易规模化生产.采用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)测试材料结构,观察材料形貌.结果表明,经600℃烧结10 h所得产物具有纯相的橄榄石型晶体结构,良好的结晶性和规整的球状形貌,粒径为60~100 nm.包覆LiFePO4晶粒的碳层厚度为2 nm左右,碳含量为5%(by mass).材料的振实密度高达1.3 g·cm-3,在0.2C倍率下首次放电比容量为162 mAh·g-1,在0.5C、1C、2C、5C和10C倍率下首次放电比容量分别为143、135、127、116和105 mAh·g-1,10C倍率下500周期循环,其比容量仍有81 mAh·g-1.  相似文献   

10.
以间苯二酚甲醛树脂作碳源,由固相法合成LiMnPO4/C复合材料.研究不同合成温度和时间对产物形貌、结构以及电化学性能的影响.结果表明,600℃热处理3 h制得的LiMnPO4/C粒径细小且分布均匀,一次颗粒粒径100~300 nm.0.02C下首次放电容量达到121.6 mAh.g-1,充放电循环20次仍可维持在11...  相似文献   

11.
以Fe(NO3)3,LiNO3,NH4H2PO4和NaNO3为原料,采用简单的液相-碳热还原法合成Li0.97Na0.03FePO4/C复合正极材料.使用X射线衍射(XRD)、扫描电子显微镜(SEM)和充放电等测试技术研究了材料的结构及倍率充放电性能.通过循环伏安(CV)曲线和电化学阻抗谱(EIS)研究电极反应过程中的动力学特点.结果表明,Na掺杂形成了具有橄榄石结构的Li0.97Na0.03FePO4固溶体,并增大了晶格中Li+一维扩散通道,使LiFePO4/C的电荷转移电阻减小了约2/3,Li+扩散系数提高了3~4倍.因此,Li0.97Na0.03FePO4/C首次放电比容量在0.1 C和2 C倍率下分别达到152 mAh g-1和109 mAh g-1,比未掺杂的LiFePO4/C的放电比容量分别提高了4.83%和62.69%.  相似文献   

12.
用真空固相反应与液相还原结合的方法,合成了锂离子电池正极材料——金属银掺杂的覆碳磷酸铁锂(LiFePO4/Ag/C),用X射线衍射、扫描电镜、循环伏安、交流阻抗等技术研究其结构、形貌及电化学性能。结果表明,该正极材料为橄榄石型晶体、类球形颗粒(粒径范围约为0.5~2.0μm);Ag掺杂能使合成的LiFePO4颗粒粒径更小、分布更均匀,有效地提高其电化学循环性能;LiFePO4/Ag/C电极0.1C倍率充放的首次放电比容量为138.2mAh/g,50次循环的放电比容量为130.1mAh/g,最高放电比容量为148.3mAh/g;LiFePO4/Ag/C正极材料具有良好的锂离子传导性能,其锂离子扩散系数(DLi+)为8.94×10-15cm2/s。  相似文献   

13.
石墨烯掺杂LiFePO4电极材料的合成及其电化学性能   总被引:2,自引:0,他引:2  
采用水热辅助法合成石墨烯改性的LiFePO4多孔微球电极材料.并对材料进行了X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),傅里叶变换红外(FT-IR)光谱,充放电等表征.从结果可以看出在2 mol·L-1LiNO3电解液体系中单纯包碳的LiFePO4微球在1C、50C倍率时的比容量分别为137、64 mAh·g-1,而石墨烯改性的LiFePO4微球的比容量分别为141、105 mAh·g-1,表现出较好的倍率特性.恒流循环充放电测试60次后两种材料容量保持率分别为70.2%、83.7%.说明掺杂石墨烯构成的三维导电网络能明显改善LiFePO4的电化学性能.  相似文献   

14.
通过低温溶剂热法和高温热处理技术合成了橄榄石结构的LiFePO4/carbon(C-LiFePO4)纳米材料.在此基础上,通过溶液共混法制备了一种新型的聚三苯胺(PTPAn)修饰包覆的C-LiFePO4复合锂离子电池正极材料(C-LiFePO4/PTPAn).利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电化学阻抗谱(EIS)以及恒电流充放电等测试方法,考察PTPAn包覆量对C-LiFePO4/PTPAn复合正极材料性能的影响.结果表明:通过溶液共混法PTPAn能够致密地包覆在C-LiFePO4表面,形成一个有效的电子/离子传输通道从而有效提高CLiFePO4基复合材料的电化学活性.所有样品中C-LiFePO4/10%(w)PTPAn作为正极材料呈现出最佳的电化学性能,在0.1C倍率恒流充放电下材料首次放电比容量为154.5 mAh g-1,在10C高倍率恒流充放电下材料的放电比容量达到114.2 mAh g-1.当C-LiFePO4/PTPAn复合材料表面包覆的PTPAn含量进一步增加,复合材料的电化学性能出现下降的趋势.电化学阻抗测试表明PTPAn包覆层明显减小了C-LiFePO4电极的电荷转移电阻.  相似文献   

15.
以磷酸亚铁为原料,分别采用磷酸亚铁与磷酸锂的直接合成法(直接法)和磷酸亚铁与原位合成磷酸锂的合成法(磷酸锂原位合成法)合成了橄榄石型LiFePO4/C复合正极材料.用X射线衍射(XRD)、扫描电镜(SEM)、以及充放电测试等方法对材料进行了结构表征和电化学性能测试.实验结果表明两种不同方法得到的样品具有橄榄石晶体结构....  相似文献   

16.
古宁宇  何兴华  李洋 《电化学》2013,(2):146-150
由LiH2PO4和FeC2O4.2H2O作原料、柠檬酸为碳源,用水溶-蒸发法制备了LiFePO4/C正极样品.采用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)分析、观察样品.用充放电曲线和电化学交流阻抗(EIS)谱图测试LiFePO4/C电极.结果表明,700℃焙烧的LiFePO4/C样品(碳量3.03%,by mass)结晶度高、无杂相、颗粒粒径100 nm,其表面包覆约5 nm碳层.该电极0.5C、2C、5C和10C(1C=170 mA.g-1)倍率放电,其比容量分别为148.2 mAh.g-1、142.4 mAh.g-1、127.4 mAh.g-1和108.5 mAh.g-1,循环寿命曲线稳定.  相似文献   

17.
以二氧化锰和氢氧化锂为原料,通过熔融浸渍法合成具有尖晶石构型的单晶锰酸锂。前驱体β-MnO2以乙酸锰和过硫酸钠为原料通过水热反应合成。基于TGA/DTA测试,确定了单晶锰酸锂的煅烧温度为470℃预烧5 h,再升温至750℃保温12h。XRD,FTIR和SEM结果表明,合成的单晶锰酸锂具有均一的棒状结构以及良好的结晶性。电化学性能测试结果表明材料在0.1C倍率下充放电时,其首次放电比容量可达126 mAh·g-1,且在一百次循环之后容量保持率为91%。  相似文献   

18.
采用新型流变相法制备锂离子电池正极材料纳米-LiVOPO4.采用X射线衍射、扫描电子显微镜以及电化学测试等手段对LiVOPO4的微观结构、表面形貌和电化学性能进行了表征.结果表明,采用流变相法制备的LiVOPO4由粒径大约在10-60nm的小颗粒组成.首次放电容量,首次充电容量以及库仑效率分别为135.7mAh·g-1,145.8mAh·g-1和93.0%.0.1C(1C=160mA·g-1)放电时,60次循环后,放电容量保持在134.2mAh·g-1,为首次放电容量的98.9%,平均每次循环的容量损失仅为0.018%.而1.0C和2.0C放电时的放电容量达到0.1C放电容量的96.5%和91.6%.随着放电次数的增加,电荷转移阻抗增加,而锂离子在电极中的扩散系数达到10-11cm2·s-1数量级.实验结果显示采用流变相法制备的LiVOPO4是一种容量高、循环性能好、倍率性能好的锂离子电池正极材料.  相似文献   

19.
利用微波辅助的多元醇法合成出纳米线和海胆状结构Co0.8Ni0.2,采用X射线衍射和透射电镜技术对该材料合成过程中的结构变化进行了详细的研究.根据晶体的成核与生长速率阐述了Co0.8Ni0.2纳米结构的形成机理.结果表明,Co0.8Ni0.2纳米材料在丙三醇氢解反应中的催化性能与其形貌和粒径密切相关.  相似文献   

20.
LiFePO4电极的倍率特性与材料的粒度和电子导电性有很大关系.采用共沉淀方法,调控预处理温度,将3种不同尺寸的FePO4前驱体通过表面修饰对-羟基苯甲酸的聚合物,可合成不同尺度的LiFePO4/C材料,分别为80 nm、200nm和1μm.纳米尺度LiFePO4-a/C电极,30C放电比容量达到了100 mAh·g-1,而微米级LiFePO4-c/C电极放电比容量仅为54mAh·g-1.均一碳包覆的LiFePO4/C电极表现出强抗氧化性,不仅提高其导电性,还可防止材料氧化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号