首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
药物渗透系数是考察复合物膜的药物释放性能的重要参数. 本文以溶解性不同的两种药物扑热息痛和5-氨基水杨酸(5-ASA)为模型药物研究了其在壳聚糖-纤维素硫酸钠聚电解质复合物膜中的渗透性能. 结果表明:壳聚糖-纤维素硫酸钠聚电解质复合物膜的渗透性能与其溶胀性能密切相关;复合物膜中壳聚糖和纤维素硫酸钠的配比、相对分子量和pH值对膜的渗透性能和溶胀性能影响显著,以扑热息痛作为模型药物研究了壳聚糖-纤维素硫酸钠聚电解质复合物膜在模拟胃肠液中对药物的渗透性能. 通过调整该复合物膜的配方,可以使该膜分别实现胃、小肠和结肠定位释药的目的.  相似文献   

2.
以壳聚糖和聚丙烯酸为原料制备了聚电解质复合物膜,并对其分离水/乙醇体系的渗透汽化特性和浓度,温度,化学组成等因素的影响进行了研究,发现后处理方法对复合物膜的分离性能影响很大。同时对其它水/有机液体系,该膜也具备优异的分离性能。  相似文献   

3.
制备了藻朊酸钠/壳聚糖聚电解质复合物复合膜,研究了进料液浓度、温度等对水/乙醇体系渗透汽化特性的影响;发现膜的不同表面接触进料液时膜的分离性能不同。同时,对其它水/有机液体系,该膜也具有优异的分离性能。  相似文献   

4.
制备了藻朊酸钠/壳聚糖聚电解质复合物复合膜,研究了进料液浓度,温度等对水/乙醇体系渗透汽化特性的影响;发现膜的不同表面是料液时膜的分离不同。同时,对其它水/有机液体系,该膜也具有优异的分离性能。  相似文献   

5.
本文研究合成条件对脱乙酰壳多糖-羧甲基纤维素聚电解质复合物的组成。结构及药物控制释放性能的影响。结果表明,反应介质的pH值对生成的脱乙酰壳多糖-羧甲基纤维素聚电解质复合物的组成和结构的影响最大,在pH值5.5合成的脱乙酰壳多糖-羧甲基纤维素聚电解质复合物具有较好的药物控释性能。  相似文献   

6.
本文研究合成条件对脱乙酰壳多糖-羧甲基纤维素聚电解质复合物的组成、结构及药物控制释放性能的影响。结果表明,反应介质的pH值对生成的脱乙酰壳多糖-羧甲基纤维素聚电解质复合物的组成和结构的影响最大,在pH值5.5合成的脱乙酰壳多糖-羧甲基纤维素聚电解质复合物具有较好的药物控释性能。  相似文献   

7.
本文研究合成条件对脱乙酰壳多糖─羧甲基纤维素聚电解质复合物的组成、结构及药物控制释放性能的影响。结果表明,反应介质的pH值对生成的脱乙酰壳多糖─羧甲基纤维素聚电解质复合物的组成和结构的影响最大,在pH值5.5合成的脱乙酰壳多糖─羧甲基纤维素聚电解质复合物具有较好的药物控释性能。  相似文献   

8.
采用液相共混的方法制备了ZSM-5分子筛填充壳聚糖膜.扫描电镜表征表明分子筛在膜中分散均匀,膜表面没有明显缺陷.考察了填充膜在碳酸二甲酯/甲醇混合液中的溶胀和吸附行为,探讨了填充膜中分子筛含量及操作温度对渗透汽化膜分离性能的影响.结果表明膜优先吸附甲醇,其分离性能主要由溶解过程控制;随着膜中分子筛含量的增加,膜的溶胀度增大,渗透通量大幅度提高;渗透通量与操作温度符合Arrhenius关系式.与壳聚糖均质膜相比,ZSM-5分子筛填充壳聚糖膜对甲醇和碳酸二甲酯混合物具有更好的分离效果.  相似文献   

9.
以戊二醛为交联剂,制备了壳聚糖(CS)-羧甲基纤维素(CMC)聚合物电解质膜.用电子显微镜观察其表面形貌.IR分析表明该聚合物薄膜含有COOH,NH 3官能团,具有两性离子的特征.与CS膜或CMC膜相比,该膜能稳定存在于酸碱溶液中.膜特性研究表明CS-CMC聚合物电解质膜具有离子交换和选择性渗透能力,可作为隔膜电解制备高铁酸盐.  相似文献   

10.
以戊二醛为交联剂,制备了壳聚糖(CS)-羧甲基纤维素(CMC)聚合物电解质膜.用电子显微镜观察其表面形貌.IR分析表明该聚合物薄膜含有COOH,NH3+官能团,具有两性离子的特征.与CS膜或CMC膜相比,该膜能稳定存在于酸碱溶液中.膜特性研究表明CS-CMC聚合物电解质膜具有离子交换和选择性渗透能力,可作为隔膜电解制备高铁酸盐.  相似文献   

11.
聚电解质复合物   总被引:20,自引:0,他引:20  
本文介绍了聚电解质复合物的研究及发展状况,包括聚电解质复合物的形成、结构以及影响形成聚电解质复合物的各种因素,还介绍了近年来以聚电解质复合物为材料 质的渗透汽化膜的应用和在生物医药方面的研究成果。  相似文献   

12.
以戊二醛为交联剂, 制备了壳聚糖(CS)-羧甲基纤维素(CMC)聚合物电解质膜. 用电子显微镜观察其表面形貌. IR分析表明该聚合物薄膜含有COOH, NH3+官能团, 具有两性离子的特征. 与CS膜或CMC膜相比, 该膜能稳定存在于酸碱溶液中. 膜特性研究表明CS-CMC聚合物电解质膜具有离子交换和选择性渗透能力, 可作为隔膜电解制备高铁酸盐.  相似文献   

13.
以戊二醛为交联剂, 制备了壳聚糖(CS)-羧甲基纤维素(CMC)聚合物电解质膜. 用电子显微镜观察其表面形貌. IR分析表明该聚合物薄膜含有COOH, NH3+官能团, 具有两性离子的特征. 与CS膜或CMC膜相比, 该膜能稳定存在于酸碱溶液中. 膜特性研究表明CS-CMC聚合物电解质膜具有离子交换和选择性渗透能力, 可作为隔膜电解制备高铁酸盐.  相似文献   

14.
聚电解质渗透汽化膜   总被引:5,自引:0,他引:5  
介绍了聚电解质渗透汽化膜的研究进展,包括聚电解质以及聚电解质复合物的定义、特点、制备、着重介绍了近年来开发的一些重要的聚电解质渗透汽化膜的制备方法及其分离性能。  相似文献   

15.
近年来,国内外对壳聚糖在生物医学领域的应用研究十分活跃。壳聚糖在低pH时带正电荷,在溶液中可与带负电荷的聚离子形成聚电解质复合物。壳聚糖基聚电解质复合物除了具有壳聚糖的生物相容性,还表现出良好的物理化学性质,在药物控制释放体系、蛋白质分离、生物酶以及细胞固定化等领域具有广泛应用。本文重点介绍壳聚糖与几种天然的或合成的聚阴离子形成的聚电解质复合物及其在生物医学领域的应用。  相似文献   

16.
多元分离体系在膜内传递过程中 ,其分离特性不仅受渗透组分与膜材料之间的相互作用的影响 ,同时也受控于膜内组分间的耦合效应的影响 .研究了渗透组分在膜界面上的溶胀分配关系 ,从理论上描述了溶胀过程中的耦合效应 .讨论了渗透组分在扩散传递过程中膜内各组分所形成的浓度场分布 ,以此研究了强相互作用下膜过程中的传递行为 .对乙醇 水体系在壳聚糖膜和硫酸交联壳聚糖膜的渗透汽化实验结果表明了耦合效应的存在以及对分离性能的影响  相似文献   

17.
在三相模型的基础上,结合Langmuir等温吸附方程和药物释放方程,建立了弱聚电解质水凝胶溶胀释药的数学模型;运用有限元方法,研究了药物在弱聚电解质水凝胶内均匀分布时凝胶体系的材料参数对溶胀及释药性能的影响;分析了水凝胶在不同阶段的释药机理;比较了药物在载药基体内的均匀分布和不均匀分布模式对凝胶释药性能的影响,当药物在载药基体内正弦分布时呈现零级释药动力学特点;对比分析了模拟结果与实验结果,验证了弱聚电解质水凝胶溶胀释药模型的准确性.  相似文献   

18.
乙基氰乙基纤维素/交联聚丙烯酸复合物膜的溶胀行为   总被引:4,自引:1,他引:3  
研究了乙基氰乙基纤维素 [(E CE)C] 交联聚丙烯酸 [PAA]胆甾相液晶复合物膜的厚度以及膜的组成对膜在水中的溶胀行为的影响 .复合物膜越厚则达到溶胀平衡所需要的时间越长 ,但是其最大溶胀率是相同的 .复合物膜的最大溶胀率先是随着 (E CE)C浓度的增加而增加 ,当 (E CE)C的浓度大于 5 1wt%的时候 ,复合物膜的最大溶胀率几乎不再发生变化 .复合物膜的交联密度越大 ,其最大溶胀率越小 ,溶胀速率也随着膜的交联 (点 )密度的增加而减小 .研究还发现复合物膜的交联 (点 )密度越大 ,其溶胀前后最大选择性反射光波长的位移也越小 .  相似文献   

19.
纤维素/壳聚糖共混透明膜的制备及阻隔抗菌性能研究   总被引:1,自引:0,他引:1  
利用壳聚糖溶液包覆法制备了具有高气体阻隔性及抗菌性的透明纤维素膜,其扫描电镜照片证明壳聚糖厚度在1.31 ~4.07 μm之间.通过红外光谱、紫外光谱、热重分析仪、电子万能试验机和接触角测试仪对纤维素/壳聚糖共混膜的结构和性能进行了详细研究,结果表明由于壳聚糖和纤维素之间具有一定的氢键相互作用,使得纤维素/壳聚糖共混膜较好地保持了纯纤维素膜的机械强度,其拉伸强度都大于110 MPa.此外,壳聚糖的包覆对纤维素膜的透明性没有影响,它在600 ~ 800 nm处的透光率仍维持在80%左右,并且提高了纤维素膜的疏水性,其水接触角从纤维素膜的70°提高到了100°.利用气体渗透仪进一步研究了纤维素/壳聚糖共混膜的氧气阻隔性,结果表明该膜具有很好的氧气阻隔性,其氧气渗透系数甚至低于市场上理想的氧气阻隔材料乙烯-乙烯醇共聚物(EVA).金黄色葡萄球菌抗菌测试表明,通过壳聚糖包覆法改性纤维素能够明显提高纤维素膜的抗菌性.  相似文献   

20.
温度和pH双敏性PVME/CMCS水凝胶辐射交联制备及其性能   总被引:1,自引:0,他引:1  
以聚甲基乙烯基醚(PVME)和羧甲基壳聚糖(CMCS)为原料, 采用电子束辐照交联方法制备聚甲基乙烯基醚/羧甲基壳聚糖(PVME/CMCS)水凝胶, 研究了温度、pH值、CMCS含量等对PVME/CMCS水凝胶溶胀度的影响, 同时以5-氟尿嘧啶(5-Fu)作模型药物, 初步探讨了凝胶药物释放性能. 结果表明, 辐射剂量在20—40 kGy时, 凝胶分数随辐射剂量的增加而快速增加, 辐射40 kGy以后趋于平衡. 在相同辐射剂量下, 随着体系中CMCS含量的增加, 凝胶分数反而减少. 该水凝胶具有一定的温度和pH敏感性, 其低临界溶解温度(LCST)在35 ℃左右, 并且在相同时间内和25及37 ℃下的溶胀反复可逆, 表现出较快的响应性. pH<3.0和pH>5.0时, 溶胀度较大; pH值为3.0~5.0时, 凝胶网络由于静电力收缩, 溶胀度较小. CMCS含量的增加和辐射剂量的减小均可提高凝胶载药量. 药物释放时间可通过改变体系中CMCS的含量和辐射剂量来调节.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号