首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
通过溶剂分散热处理方法制备了一种吡咯和对甲苯磺酸(TsOH)共同修饰的碳载非贵金属复合催化剂(Fe-N/C-TsOH),并采用扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对催化剂的形貌和组成成分进行表征. 借助循环伏安法(CV)和旋转圆盘技术研究了TsOH对催化剂在0.1 mol·L-1 KOH介质中催化氧还原性能的影响. 结果表明:TsOH的存在对催化剂催化氧还原反应(ORR)的活性影响很大. 以其制备的气体扩散电极在碱性电解质溶液中催化氧还原过程时转移的电子数为3.899,远比不含TsOH修饰的催化剂催化氧还原的电子数(3.098)高. 此外,研究发现600 ℃热处理过的Fe-N/C-TsOH催化剂表现出最佳的氧还原催化性能. 相比未经热处理过的Fe-N/C-TsOH催化剂,起峰电位和-1.5 mA·cm-2电流密度对应的电压分别向正方向移动30 和170 mV. XPS研究结果表明吡咯氮是催化剂主要活性中心,提供氧还原活性位,而TsOH加入形成的C―Sn―C和―SOn―有利于催化剂催化氧还原活性的提高,从而使该催化剂对氧还原表现出很好的电催化性能和选择性.  相似文献   

2.
以吡咯和对甲苯磺酸(TsOH)作为碳载过渡金属催化剂的掺杂剂,经溶剂分散及600℃热处理制备了一种高效催化氧还原反应(ORR)的碳载双杂化过渡金属催化剂(Fe-N/C-TsOH-600).利用X射线衍射(XRD)和X射线光电子能谱(XPS)对催化剂的结构进行表征.运用旋转圆盘电极(RDE)技术研究了该催化剂在碱性介质中催化氧还原的电化学催化活性和稳定性,探讨了不同浓度甲醇溶液对Fe-N/C-TsOH-600催化剂催化氧还原活性的影响.结果表明,以Fe-N/C-TsOH-600制备的气体扩散电极在0.1 mol/L KOH电解质溶液中对氧具有很高的选择催化还原活性和稳定性.当电极经过4800圈循环伏安(CV)扫描测试后,催化剂催化氧还原的性能基本保持稳定,并以4电子途径将氧气催化还原.此外,研究还发现,Fe-N/C-TsOH-600在混有甲醇的碱性电解质溶液中对氧的催化还原选择性比商业Pt/C催化剂高.XPS结果表明,吡咯氮是催化剂高效催化氧还原的主要活性中心,提供氧还原的活性位,而TsOH作为供硫掺杂剂对提高催化剂的活性具有重要作用,其加入后形成的C—S—C有利于催化剂催化氧还原活性的提高,从而使该催化剂对氧还原表现出很好的电催化性能和选择性.  相似文献   

3.
分别以三聚氰胺和三聚氰胺的聚合物为配体, 采用浸渍法合成了两种氧还原反应(ORR)催化剂Fe-N/C(1)和Fe-N/C(2). 通过X射线衍射光谱(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和电化学测试对催化剂的成分、形貌和电催化性能进行了表征. 结果表明, 以三聚氰胺聚合物为配体制备的Fe-N/C具有更高的ORR催化活性. 在高温热处理过程中, 催化剂表面能形成更多的石墨N活性点, 是其ORR性能提高的重要原因.  相似文献   

4.
采用浸渍法,以聚吡咯为配体,在合成过程中掺入氧化石墨烯,制备了具有三明治结构的NG/Fe-N/C复合型催化剂,通过石墨烯和Fe-N/C之间的协同效应,提高了复合型催化剂的氧还原活性和耐久性能.采用XRD,SEM,TEM和XPS等方法对催化剂的化学成分、物理结构和形貌进行了表征.结果表明,当氧化石墨烯的掺入质量分数为25%,热处理温度为800℃时,催化剂具有最佳氧还原活性.循环伏安加速测试表明,NG/Fe-N/C-25催化剂稳定性优于商业20%Pt/C催化剂.NG/Fe-N/C-25催化剂的氮含量为5.17%,其中,石墨氮和吡啶氮的含量分别占44.35%和32.66%,较高的石墨氮和吡啶氮含量使催化剂具有优良的氧还原反应(ORR)催化活性和稳定性.  相似文献   

5.
采用脉冲微波辅助化学还原-含氢气体热处理法制备了质子交换膜燃料电池(PEMFC)用Pt-Fe/C合金催化剂.通过电感耦合等离子体(ICP)检测了金属元素含量,用透射电镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)等技术对催化剂的微观结构和形貌进行了表征,并利用循环伏安(CV)法评价了催化剂催化氧还原性能.结果表明,脉冲微波辅助化学还原法是一种快速制备粒径较小、分布均匀的Pt-Fe/C催化剂的有效方法,含氢气体热处理对提高催化剂活性有重要作用.还原热处理温度和时间对催化剂活性也有很大影响.经过500°C还原热处理后的催化剂活性比还原热处理之前的催化剂性能有很大提高.TEM和XRD结果显示,Pt-Fe/C-500-3h的纳米粒子均匀地分散在碳载体上,平均粒径为1.8nm,500°C下热处理3h的催化剂有最大的电化学表面积(ESA),为55.14m2·g-1.  相似文献   

6.
热处理对甲醇电氧化催化剂PtRu/C性能的影响   总被引:1,自引:1,他引:0  
采用非离子表面活性剂Triton X-100作为稳定剂制备了催化甲醇电氧化反应的PtRu/C催化剂, 研究了热处理温度对催化剂的组成、结构、形貌和活性的影响. 利用循环伏安法研究了PtRu/C催化剂催化甲醇电氧化的活性, 用热重和差热分析(TG-DTA)、X射线能量色散谱(EDX)、X射线衍射(XRD)、X射线光电子能谱(XPS)和透射电子显微镜(TEM)对PtRu/C催化剂进行了表征. 研究结果表明, 热处理对PtRu/C催化剂粒子的大小、分布和Pt的氧化态有重要的作用. 在350 ℃下热处理的催化剂显示了最好的催化甲醇电氧化的性能, 由Triton X-100作为稳定剂制备的PtRu/C催化剂最适宜的热处理温度是350 ℃.  相似文献   

7.
采用两步化学还原法制备了Co@Pt/C电催化剂, 并在还原气氛下对催化剂进行热处理. 通过高分辨透射电镜(HR-TEM)和X射线光电子能谱(XPS)等技术对催化剂的微观结构和形貌进行表征. 结果表明: 形成的Co@Pt/C催化剂具有核壳结构, 金属纳米颗粒均匀负载于碳上, 其粒径分布范围较窄; 热处理对催化剂的结构和形貌有较大影响. 利用循环伏安(CV)法和线性伏安扫描(LSV)法表征催化剂的电化学活性、氧还原反应(ORR)动力学特性及耐久性. 制备的Co@Pt/C催化剂在电解质溶液中表现出良好的电化学性能, 核壳结构的形成有助于提高Pt 的利用率. 动力学性能测试表明催化剂的ORR反应以四电子路线进行. 相比于合金催化剂,核壳结构催化剂的耐久性和稳定性有很大程度的改善.  相似文献   

8.
通过原位聚合法制备了以超支化聚合物的氮修饰的PdNx/C催化剂, 并考察了其催化甲酸电氧化反应的性能. 采用透射电子显微镜(TEM)、 X射线光电子能谱(XPS)和X射线衍射(XRD)等技术研究了氮的引入对催化活性组分Pd的形貌及表面电子形态的影响. 结果表明, 修饰氮后Pd纳米粒子粒径可稳定在2 nm, 并且保持了较高的分散度, 改善了表面Pd电子状态. 与Pd/C催化剂相比, 氮修饰的PdN20/C用于甲酸电氧化的Pd单位质量比活性提高了10.9%.  相似文献   

9.
采用尿素作为氮源,通过热退火法制备氮掺杂还原氧化石墨烯,然后以乙酰丙酮钴作为钴源通过水热法制备氮掺杂还原氧化石墨烯/四氧化三钴杂化纳米片作为催化氧还原和氧析出反应的双功能催化剂。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线电子能谱仪(XPS)等对其进行形貌结构表征,通过旋转圆盘电极等电化学测试对其电催化性能进行分析,可以看出该催化剂具有良好的氧还原和氧析出催化性能。  相似文献   

10.
研制高活性的Fe/N/C氧还原催化剂对于降低燃料电池成本、实现商业化应用有重要意义. 为了实现Fe/N/C催化剂的理性设计,需要深入研究其活性位结构. 本文我们发展一种研究活性位结构的新策略,即以预先合成好的聚间苯二胺基Fe/N/C催化剂(PmPDA-FeNx/C)为起始物,对其在1000~1500 oC高温下再次进行热处理并使其失活,通过关联催化剂热处理前后的结构变化与氧还原催化性能来揭示活性位结构. 实验结果表明,随着热处理温度升高,活性中心结构被破坏,铁原子析出团聚并形成纳米颗粒,氮元素挥发损失,导致催化剂失活. XPS分析显示,低结合能含氮物种的含量与催化剂的ORR活性呈良好的正相关性,表明活性中心很可能是由吡啶N和Fe-N物种构成的.  相似文献   

11.
采用离子交换法与热处理相结合的方法,以ZIF67为前驱体,硫代乙酰胺为硫源,制备出硫化钴/多孔碳(CoS/C)复合催化材料,并探讨了硫化时间对复合催化剂的形貌、结构及其氧还原(ORR)性能的影响。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、N2吸附-脱附测定仪、X射线光电子能谱分析(XPS)、拉曼光谱仪(Raman)和旋转圆盘电极(RDE)技术表征催化剂的物理特征和电催化性能。研究结果显示,在碱性条件下该复合催化剂具有与20%(w/w)的商业Pt/C催化剂相媲美的ORR活性,其半波电位仅比Pt/C催化剂低31 mV。随着硫化时间的增加,硫化钴颗粒逐渐增大,催化剂中碳材料的无序程度出现先减小后增大的趋势。在硫化时间为10 min时,复合催化剂在0.1 mol·L-1KOH中表现出良好的电催化活性,且在ORR过程中复合催化剂的平均转移电子数可达到3.72,接近于4,说明氧气在该催化剂表面发生的是四电子转移过程。  相似文献   

12.
比较了甲醇对Pt/C和炭载四羧基酞菁钴(CoPcTc/C)催化氧还原性能的影响.结果表明,甲醇使Pt/C催化氧还原的性能严重降低,而对经800℃热处理的CoPcTc/C(CoPcTc/C-800)基本没有影响;并且CoPcTc/C-800催化氧还原的性能优于经其它温度热处理的CoPcTc/C,CoPcTc/C-800是一种较好的直接甲醇燃料电池的耐甲醇阴极电催化剂.XPS结果表明,CoPcTc/C-800的活性位可能是含CoN4结构的物质和零价Co的混合物.  相似文献   

13.
质子交换膜燃料电池Pd修饰Pt/C催化剂的电催化性能   总被引:2,自引:1,他引:2  
吕海峰  程年才  木士春  潘牧 《化学学报》2009,67(14):1680-1684
通过对Pt催化剂表面进行Pd修饰提高质子交换膜燃料电池阴极催化剂的氧还原反应(ORR)活性. 采用乙二醇还原法制备了不同比例的Pd修饰Pt/C催化剂. 透射电镜(TEM)和X射线衍射(XRD)测试结果表明, 制备的催化剂贵金属颗粒粒径主要分布在1.75~2.50 nm之间, 并均匀地分散在碳载体表面. 循环伏安方法(CV)研究表明Pd修饰Pt/C催化剂的电化学活性面积低于传统的Pt/C催化剂. 但通过旋转圆盘电极(RDE)测试研究发现, 制备的催化剂具有比传统Pt/C催化剂高的ORR活性.  相似文献   

14.
为了克服传统Pt系催化剂价格昂贵、稳定性差的缺点,采用热解新型Ti O2/聚苯胺(PANI)复合物的方法合成了Ti O2/C催化剂.用扫描电子显微镜、X射线光电子能谱、X射线衍射、傅里叶变换红外光谱、拉曼光谱、透射电子显微镜、循环伏安法和线性扫描伏安法等方法研究了热处理和PANI复合比例对复合物的形貌、成键、晶相组成及氧还原性能的影响.结果表明,PANI与Ti O2间存在相互作用,可以抑制Ti O2的团聚和锐钛矿向金红石的转变.热处理制得Ti O2/C的氧还原活性随着PANI载体含量增加先升高后降低,PANI和Ti O2质量比为35/100时,催化剂的氧还原活性最高.同时,循环伏安和时间-电流曲线测试表明,已制备的复合材料在催化氧还原反应进行时具有较好的稳定性.  相似文献   

15.
用简单的化学方法制备了过渡金属(TM)壳聚糖水杨醛席夫碱配合物,然后以此配合物为金属源和N源、以硝酸预处理石墨为载体,经热处理后制备了过渡金属/氮掺杂石墨催化剂TM-N-C-t(TM=Co,Ni,Cu;t=200,400,600,800,1 000℃).以此催化剂为修饰剂制备了玻碳修饰电极,并用循环伏安法(CV)和旋转圆盘电极(RDE)伏安法研究了催化剂TM-N-C-t的电化学行为和电催化氧还原(ORR)的催化性能,催化剂的组成和结构采用TG,FT-IR,XRD,XPS等技术进行了表征.研究结果表明,催化剂TM-N-C-t对ORR均显示不同程度的催化活性,其中以1 000℃热处理的钴基催化剂Co-N-C-1000的催化活性最好,其活性已接近相同条件下的商用催化剂JM 20%Pt/C,催化活性位主要为Co—N—C.根据扩散控制的不可逆反应的循环伏安行为,计算得到了TM-N-C-t催化剂电催化ORR的动力学参数,并以此提出了氧还原催化反应的机理,在活性最好的催化剂Co-N-C-1000修饰电极上,氧气以4e转移途径被还原为水.  相似文献   

16.
制备了钴卟啉负载碳黑催化剂(CoTMPP/BP2000)用于燃料电池阴极氧还原反应. 利用循环伏安法研究了200~900 ℃热处理温度对催化性能的影响. 研究结果表明, 热处理能够提高CoTMPP/BP2000的催化活性, 热处理温度为900 ℃时, 催化剂的氧还原能力最好. 利用紫外-可见光谱、透射电镜、红外光谱、热重分析及X射线光电子能谱等手段研究了热处理温度对催化剂结构的影响. 结果表明, 热处理改变了催化剂的活性中心结构, 400 ℃以上热处理使催化剂中钴卟啉环的结构坍塌, Co—N4键断裂; 900 ℃高温下形成了稳定的Co—Nx—C结构, 新的活性位使催化剂的氧还原能力得到提高.  相似文献   

17.
采用脉冲微波辅助化学还原法制备了钴-聚吡咯-碳(Co-PPy-C)载Pt催化剂(Pt/Co-PPy-C),其中Pt的总质量占20%.利用透射电镜(TEM)、光电子射线能谱分析(XPS)和X射线衍射(XRD)研究了催化剂的结构,用循环伏安(CV)、线性扫描伏安(LSV)等方法考察了其电化学活性及氧还原反应(ORR)动力学特性及耐久性.Pt/Co-PPy-C电催化剂的金属颗粒直径约1.8 nm,略小于商用催化剂Pt/C(JM)颗粒尺寸(约2.5 nm);催化剂在载体上分散均匀,粒径分布范围较窄.Pt/Co-PPy-C的电化学活性比表面积(ECSA)(75.1 m2·g-1)高于商用催化剂的ECSA(51.3 m2·g-1).XPS测试表明,自制催化剂表面的Pt主要以零价形式存在.而XRD结果显示,自制催化剂中Pt(111)峰最强,Pt主要为面心立方晶格.Pt/Co-PPy-C具有与Pt/C(JM)相同的半波电位;在0.9 V下,Pt/Co-PPy-C的比活性(1.21 mA·cm-2)高于商用催化剂的比活性(1.04 mA·cm-2),表现出更好的ORR催化活性.动力学性能测试表明催化剂的ORR反应以四电子路线进行.CV测试1000圈后,Pt/Co-PPy-C和Pt/C(JM)的ECSA分别衰减了13.0%和24.0%,可见自制催化剂的耐久性高于商用Pt/C(JM),在质子交换膜燃料电池(PEMFC)领域有一定的应用前景.  相似文献   

18.
以碳黑(Vulcan XC-72R)为载体, 硫酸钴(CoSO4 · 7H2O)和吡啶(Py)作为催化剂前躯体, 经溶剂分散及800℃热处理可制备出高效催化氧还原反应(ORR)的碳载钴吡啶复合催化剂(15%Co25%Py/C, 质量分数). 采用红外光谱(IR)和X射线光电子能谱(XPS)等对催化剂的结构进行表征. 运用旋转圆盘电极(RDE)技术研究了不同浓度的KOH溶液(0.05~12.0 mol/L)对CoPy/C催化氧还原活性的影响. 结果表明, 不同浓度的KOH溶液对CoPy/C催化剂催化氧还原反应(ORR)的性能影响很大, 在0.05和0.1 mol/L KOH溶液中催化剂活性最高. 以其制备的气体扩散电极在0.05 mol/L KOH溶液(O2气氛)中的半波电位为-0.138 V, 起峰电位为0.10 V, 同时表现出明显的极限扩散电流. 在-0.381 V时电流密度达到最大值(4.39 mA/cm2). 随着KOH溶液浓度的增加(pH值下降), 起始电压沿负方向移动, 同时动力学、 混合动力学和扩散区的电流密度均下降. RDE研究结果表明, 在0.05和0.1 mol/L KOH溶液中, O2在CoPy/C电极上的还原主要经4e-过程还原成H2O. XPS研究结果表明, 吡啶作为小分子富氮源对提高催化剂的活性具有重要作用, 所制备催化剂经800℃高温热处理形成了石墨N, 吡啶N以及部分氧化态的氮结构, 其中石墨N和吡啶N作为催化剂的活性中心, 提供氧还原活性位, 从而使该类催化剂对氧还原表现出很好的电催化性能和选择性.  相似文献   

19.
《电化学》2019,(5)
本文以还原氧化石墨烯(rGO)为载体制备了片状NiO/rGO和球形NiO/N-rGO结构的氧还原催化剂.通过X-射线衍射(XRD)、Raman(拉曼)测试、X-射线光电子能谱(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等方法表征了两种催化剂的结构和形貌.采用循环伏安法(CV)、Tafel曲线、线性扫描伏安法(LSV)、旋转圆盘电极(RDE)和旋转环盘电极(RRDE)等技术测试研究了两种催化剂的电化学催化氧还原性能.研究结果表明,球形NiO/N-rGO催化剂催化氧还原的峰电流密度和起始电位(0.89 V vs. RHE)与商业化的Pt/C(20%)催化剂相近.旋转圆盘电极(RDE)和旋转环盘电极(RRDE)测试证明,在碱性电解液中NiO/rGO和NiO/N-rGO催化的氧还原反应均主要通过4-电子途径反应途径发生,球形NiO/N-rGO催化剂展现出替代Pt/C基催化剂的潜力.  相似文献   

20.
选用壳聚糖(CS)为原料制备了壳聚糖水杨醛席夫碱锰配合物(Mn-CS-sal)。将Mn-CS-sal配合物负载于石墨碳上得到碳载配合物(Mn-CS-sal/C),后经高温热处理得到Mn-N-C目标催化剂(Mn-N-C-t,t=200、400、600、800、1 000℃)。采用FT-IR、XRD、XPS和电化学等方法对催化剂的组成和结构进行了表征,对其在氧还原反应中的电催化性能进行了研究。结果表明,所得到的Mn-N-C催化剂对氧还原反应(ORR)具有很好的催化作用,但以600℃热处理制备的催化剂其活性最好。催化剂中Mn-N-C结构是催化ORR的活性位。采用循环伏安法获得了Mn-N-C-t催化ORR的动力学参数,即总的转移电子数n和电子传递系数αnα;具有最佳活性的Mn-N-C-600催化剂的总转移电子数为3.63,说明在此条件下,Mn-N-C-600催化ORR主要以4e转移途径为主,由此提出了可能的氧还原反应的机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号