首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, well-shaped In(OH)3 hollow microspheres have been successfully prepared via a novel surfactant-free vesicle-template-interface route in the "formamide-resorcinol-water" system, in which spontaneous vesicles were formed under hydrothermal conditions and NH3 from the hydrolysis of formamide acted as the OH- provider. Morphological and structural characterizations indicate that the shells of as-prepared In(OH)3 hollow microspheres were constructed by numerous nanocubes about 80 nm in size. As desired, In2O3 hollow microspheres were obtained from annealing the designed In(OH)3 precursors, and the as-obtained In2O3 hollow microspheres performed well as a gas-sensing material in response to both ethanol and formaldehyde gases and as a photocatalyst for photocatalytic degradation of rhodamine B. The facile preparation method and the improved properties derived from special microstructures are significant in the synthesis and future applications of functional nanomaterials.  相似文献   

2.
Well-defined olive-shaped Bi(2)S(3)/BiVO(4) microspheres were synthesized through a limited chemical conversion route (LCCR), where olive-shaped BiVO(4) microspheres and thioacetamide (TAA) were used as precursors and sulfur source, respectively. The as-synthesized products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission microscope (HRTEM), X-ray photoelectron spectra (XPS), UV-visible diffuse-reflectance spectroscopy (UV-vis DRS), and photoluminescence (PL) spectra in detail. Compared with pure BiVO(4) microspheres and Bi(2)S(3) nanorods, the Bi(2)S(3)/BiVO(4) products showed obviously enhanced photocatalytic activity for the degradation of rhodamine B (Rh B) in aqueous solution under visible-light irradiation (λ > 400 nm). In addition, the Bi(2)S(3)/BiVO(4) composite microspheres showed good visible-light-driven photocatalytic activity for the degradation of refractory oxytetracycline (OTC) as well. On the basis of UV-vis DRS, the calculated energy band positions, and PL spectra, the mechanism of enhanced photocatalytic activity of Bi(2)S(3)/BiVO(4) was proposed. The present study provides a new strategy to design composite materials with enhanced photocatalytic performance.  相似文献   

3.
采用种子乳液聚合法在Fe3O4纳米粒子表面聚合包覆N-异丙基丙烯酰胺(NIPAM)与α-甲基丙烯酸(MAA)的共聚物,制备了磁性热敏聚合物微球Fe3O4/P(NIPAM-co-MAA).利用广角X射线衍射仪(WAXD)、透射电子显微镜(TEM)、zeta粒度仪(DLS)、热重分析(TGA)、振动样品磁力计(VSM)及比表面积测试仪(BET)等对微球的结构与形貌进行了表征,通过紫外-可见光分光光度法(UV-Vis)研究了微球对水溶性模型药物罗丹明B(RhB)的负载和磁感应控制释放行为.结果表明,微球粒径为80~200 nm,比表面积约为30.04m2/g,平均孔径约为24.50 nm;微球中聚合物含量约为73 wt%,磁粒子含量约为20 wt%,饱和磁感应强度为16.49 emu/g,其体积相转变温度(VPTT)约为37.5℃.RhB在微球中的装载量可以达到16.38 mg/g;在外加交变磁场作用下,RhB在模拟肠液和胃液中的磁感应释放量分别达到10.47和13.02 mg/g.  相似文献   

4.
Selective detection of phosphopeptides from complex biological samples is a challenging and highly relevant task in many proteomics applications. In this study, a novel phosphopeptide enrichment approach based on the strong interaction of Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres with phosphopeptides has been developed. With a well-defined core-shell structure, the Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres not only have a shell of aluminum oxide, giving them a high-trapping capacity for the phosphopeptides, but also have magnetic property that enables easy isolation by positioning an external magnetic field. The prepared Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres have been successfully applied to the enrichment of phosphopeptides from the tryptic digest of standard phosphoproteins beta-casein and ovalbumin. The excellent selectivity of this approach was demonstrated by analyzing phosphopeptides in the digest mixture of beta-casein and bovine serum albumin with molar ratio of 1:50 as well as tryptic digest product of casein and five protein mixtures. The results also proved a stronger selective ability of Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres over Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC (immobilized metal affinity chromatography) resin, and TiO(2) beads. Finally, the Al(2)O(3) coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. These results show that Fe(3)O(4)@Al(2)O(3) magnetic core-shell microspheres are very good materials for rapid and selective separation and enrichment of phosphopeptides.  相似文献   

5.
Nearly monodispersed silica-poly(methacrylic acid) (SiO 2-PMAA) core-shell microspheres were synthesized by distillation-precipitation polymerization from 3-(trimethoxysilyl)propylmethacrylate-silica (SiO 2-MPS) particle templates. SiO 2-PMAA-SiO 2 trilayer hybrid microspheres were subsequently prepared by coating of an outer layer of SiO 2 on the SiO 2-PMAA core-shell microspheres in a sol-gel process. pH-Responsive PMAA hollow microspheres with flexible (deformable) shells were obtained after selective removal of the inorganic SiO 2 core from the SiO 2-PMAA core-shell microspheres by HF etching. The pH-responsive properties of the PMAA hollow microspheres were investigated by dynamic laser scattering (DLS). On the other hand, concentric and rigid hollow silica microspheres were prepared by selective removal of the PMAA interlayer from the SiO 2-PMAA-SiO 2 trilayer hybrid microspheres during calcination. The hybrid composite microspheres, pH-sensitive hollow microspheres, and concentric hollow silica microspheres were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray (EDX) analysis.  相似文献   

6.
In this study, hollow olive-shaped BiVO(4) and n-p core-shell BiVO(4)@Bi(2)O(3) microspheres were synthesized by a novel sodium bis(2-ethylhexyl)sulfosuccinate (AOT)-assisted mixed solvothermal route and a thermal solution of NaOH etching process under hydrothermal conditions for the first time, respectively. The as-obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy, Brunauer-Emmett-Teller surface area, and UV-vis diffuse-reflectance spectroscopy in detail. The influence of AOT and solvent ratios on the final products was studied. On the basis of SEM observations and XRD analyses of the samples synthesized at different reaction stages, the formation mechanism of hollow olive-shaped BiVO(4) microspheres was proposed. The photocatalytic activities of hollow olive-shaped BiVO(4) and core-shell BiVO(4)@Bi(2)O(3) microspheres were evaluated on the degradation of rhodamine B under visible-light irradiation (λ > 400 nm). The results indicated that core-shell BiVO(4)@Bi(2)O(3) exhibited much higher photocatalytic activities than pure olive-shaped BiVO(4). The mechanism of enhanced photocatalytic activity of core-shell BiVO(4)@Bi(2)O(3) microspheres was discussed on the basis of the calculated energy band positions as well. The present study provides a new strategy to enhancing the photocatalytic activity of visible-light-responsive Bi-based photocatalysts by p-n heterojunction.  相似文献   

7.
Poly-DL-lactide-poly(ethylene glycol) (PELA) microspheres containing Hepatitis B surface antigen (HBsAg) were elaborated by a solvent extraction method based on the formation of a double water/oil/water (w/o/w) emulsion. Microspheres were characterized in terms of morphology, size and size distribution, encapsulation efficiency, and the efficiency of microsphere formation (EMF). Transmission electron microscopy (TEM) and polyacrylamide gel electrophoresis (PAGE) were used to investigate the structural integrality of HBsAg encapsulated in PELA microspheres. The release profile was investigated by the measurement of antigen present in the release medium at various intervals. The PELA-10 microspheres displayed the highest antigen encapsulation efficiency (about 80%), and antigen molecules could be stabilized in the PELA-10 microspheres during the preparation process. It suggested that the PELA microspheres had a great potential as a new polymer adjuvant for HBsAg. The release of Hepatitis B surface antigen from poly-DL-lactide-poly(ethylene glycol) microspheres.  相似文献   

8.
In this paper, we report the preparation of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres by a solvothermal combined with precursor thermal conversion method. These γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were constructed by three-dimensional self-assembly of nanosheets, forming porous nanostructures. The effects of experimental parameters including molar ratio of reactants and reaction temperature on the precursors were studied. The time-dependent experiments indicated that the Ostwald ripening was responsible for the formation of the hierarchically nanostructured hollow microspheres of the precursors. γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres were obtained by the thermal transformation of the precursor hollow microspheres. Both γ-Fe(2)O(3) and Fe(3)O(4) hierarchically nanostructured hollow microspheres exhibited a superparamagnetic property at room temperature and had the saturation magnetization of 44.2 and 55.4emu/g, respectively, in the applied magnetic field of 20 KOe. Several kinds of organic pollutants including salicylic acid (SA), methylene blue (MB), and basic fuchsin (BF) were chosen as the model water pollutants to evaluate the removal abilities of γ-Fe(2)O(3) and Fe(3)O(4) magnetic hierarchically nanostructured hollow microspheres. It was found that γ-Fe(2)O(3) hierarchically nanostructured hollow microspheres showed a better adsorption ability over SA than MB and BF. However, Fe(3)O(4) hierarchically nanostructured hollow microspheres had the best performance for adsorbing MB.  相似文献   

9.
研制出Na_2O-B_2O_3-Al_2O_3-SiO_2系统玻璃,粉碎成一定粒度的颗粒,制成2mm左右的玻璃珠,经过热处理分相、酸溶、水洗、烘干,得到了气孔率为24%左右的微孔玻璃珠,利用微孔的吸附特性及极大的比表面积,可做为良好的吸附载体材料。  相似文献   

10.
Three-component microspheres containing an SiO(2)-coated Fe(3)O(4) magnetite core and a layered double hydroxide (LDH) nanoplatelet shell have been synthesized via an in situ growth method. The resulting Fe(3)O(4)@SiO(2)@NiAl-LDH microspheres display three-dimensional core-shell architecture with flowerlike morphology, large surface area (83 m(2)/g), and uniform mesochannels (4.3 nm). The Ni(2+) cations in the NiAl-LDH shell provide docking sites for histidine and the materials exhibit excellent performance in the separation of a histidine (His)-tagged green fluorescent protein, with a binding capacity as high as 239 μg/mg. The microspheres show highly selective adsorption of the His-tagged protein from Escherichia coli lysate, demonstrating their practical applicability. Moreover, the microspheres possess superparamagnetism and high saturation magnetization (36.8 emu/g), which allows them to be easily separated from solution by means of an external magnetic field and subsequently reused. The high stability and selectivity of the Fe(3)O(4)@SiO(2)@NiAl-LDH microspheres for the His-tagged protein were retained over several separation cycles. Therefore, this work provides a promising approach for the design and synthesis of multifunctional LDH microspheres, which can be used for the practical purification of recombinant proteins, as well as having other potential applications in a variety of biomedical fields including drug delivery and biosensors.  相似文献   

11.
Hydrozincite (Zn5(CO3)2(OH)6) microspheres with a tunable surface architecture have been successfully synthesized via a homogeneous precipitation method under solvothermal conditions. For a smooth hydrozincite microsphere, various building blocks such as nanocubes, nanorods, and nanosheets are arranged to cover a spherical surface by concisely controlling reaction time and the volume of ethylene glycol. Hexagonal Zn5(CO3)2(OH)6 with nanostep structures are also prepared without any additives. The hollow ZnO microspheres with a porous surface have been successfully fabricated via a solution-based method by the room-temperature treatment of filled Zn5(CO3)2(OH)6 microspheres composed of nanocubes. A possible growth mechanism of these hollow ZnO microspheres is proposed. The similar filled ZnO microspheres can also be obtained by a direct pyrolysis of Zn5(CO3)2(OH)6 microspheres composed of nanocubes at 450 degrees C.  相似文献   

12.
Two kinds of BiOBr nanosheets-assembled microspheres were successfully prepared via a facile, rapid and reliable microwave-assisted solvothermal route, employing Bi(NO(3))(3)·5H(2)O and cetyltrimethylammonium bromide (CTAB) as starting reagents in the absence or presence of oleic acid. The phase and morphology of the products were characterized by powder X-ray diffraction (XRD), energy dispersive spectrometry (EDS), selected area electron diffraction (SAED), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). Experiments indicated that the formation of these building blocks of microspheres could be ascribed to the self-assembly of nanoparticles according to mesocrystal growth mode. Interestingly, both samples exhibited not only strong adsorption abilities, but also excellent photocatalytic activities for methyl orange (MO), rhodamine B (RhB) and phenol. The resulting BiOBr hierarchical microspheres are very promising adsorbents and photocatalysts for the treatment of organic pollutants.  相似文献   

13.
Hollow La(2)O(3):Ln (Ln = Yb/Er, Yb/Ho) microspheres with up-conversion (UC) luminescence properties were successfully synthesized via a facile sacrificial template method by employing carbon spheres as hard templates followed by a subsequent heating process. The structure, morphology, formation process, and fluorescent properties are well investigated by various techniques. The results indicate that the hollow La(2)O(3):Ln microspheres can be well indexed to the hexagonal La(2)O(3) phase. The hollow La(2)O(3):Ln microspheres with uniform diameter of about 270 nm maintain the spherical morphology and good dispersion of the carbon spheres template. The shell of the hollow microspheres consists of numerous nanocrystals with the thickness of approximately 40 nm. Moreover, the possible formation mechanism of evolution from the carbon spheres to the amorphous precursor and to the final hollow La(2)O(3):Ln microspheres has also been proposed. The Yb/Er and Yb/Ho codoped La(2)O(3) hollow spheres exhibit bright up-conversion luminescence with different colors derived from different activators under the 980 nm NIR laser excitation. Furthermore, the doping concentration of the Yb(3+) is optimized under fixed concentration of Er(3+)/Ho(3+). This material may find potential applications in drug delivery, hydrogen and Li ion storage, and luminescent displays based on the uniform hollow structure, dimension, and UC luminescence properties.  相似文献   

14.
报道了通过分散聚合反应在碱式碳酸铜微球表面锚接聚苯乙烯纳米粒子, 以调节其亲水/亲油性的方法. 结果表明, 锚接的聚苯乙烯纳米粒子尺寸愈大, 所得的改性碱式碳酸铜微球疏水性愈强. 用对油和水润湿性适中的改性碱式碳酸铜微球为乳化剂, 能够制备出稳定的油包水型Pickering乳液. 改性碱式碳酸铜微球组装在Pickering乳液的分散相液滴表面, 形成一个固体壳层. 将Pickering 乳液的分散相水核凝胶化, 合成出分级结构琼脂糖凝胶微球.  相似文献   

15.
Janus Cu2(OH)2CO3/CuS microspheres were prepared via a Pickering emulsion route for the first time. By treating the Janus Cu2(OH)2CO3/CuS microspheres with dilute hydrochloric acid, ringent Cu2(OH)2CO3/CuS core/shell microspheres and ringent CuS shells were obtained. The hatch size of the ringent CuS shells increased with the increase of the hydrophobicity of the precursor Cu2(OH)2CO3 microspheres. Scanning electron microscopy, X-ray diffraction, energy dispersion spectra, and particle size analysis were used to characterize the products thus formed.  相似文献   

16.
The design of pore structure is the key factor for the performance of porous carbon spheres.In this wo rk,novel micron-sized colloidal crystal microspheres consisting of fibrous silica(F-SiO_2) nanoparticles are firstly prepared by water-evapo ration-induced self-assembly of F-SiO_2 nanoparticles in the droplets of an inverse emulsion system to be used as sacrificial templates.Acrylonitrile(AN) was infiltrated in the voids of the F-SiO_2 colloidal crystal microspheres,and in-situ induced by ~(60)Co y-ray to polymerize into polyacrylonitrile(PAN).After the PAN-infiltrated F-SiO_2 colloidal crystal microspheres were carbonized and etched with HF solution,novel micron-sized inverse-opal N-doped carbon(IO-NC) microspheres consisting of hollow carbon nanoparticles with a hierarchical macro/meso-porous inner surface were obtained.The IO-NC microspheres have a specific surface area as high as 266.4 m~2/g and a molar ratio of C/N of 5.They have a good dispersibility in water,and show a high adsorption capacity towards rhodamine B(RhB) up to 137.28 mg/(g microsphe re).This work offers a way to obtain novel micron-sized hierarchical macro/meso-porous N-doped carbon microspheres,which opens a new idea to prepare high-performance hierarchical porous carbon materials.  相似文献   

17.
The adsorption behaviors of bovine serum albumin (BSA) containing both dimeric and monomeric species onto polymer microspheres were examined using various homopolymers and poly(2-hydroxyethyl methacrylate)/polystyrene composite microspheres which were produced by the emulsifier-free (seeded) emulsion polymerization technique. The preferential adsorption of the BSA dimer was clearly observed in an optimum region of the surface hydrophilicities of the polymer microspheres. The preferential adsorption of the BSA dimer onto the composite polymer microspheres having heterogeneous surfaces consisting of hydrophilic and hydrophobic parts was more marked than those onto the homopolymer and copolymer microspheres having homogeneous surfaces.  相似文献   

18.
Three-dimensional (3D) nanostructured CaWO(4):Tb(3+)microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl(2), TbCl(3) and Na(2)WO(4) with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO(4):Tb(3+)nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500 nm, respectively. The 3D CaWO(4):Tb(3+)nanostructured microspheres with diameter of 2-4 μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO(4):Tb(3+)microspheres was proposed. The Photoluminescent (PL) properties of Tb(3+) ions in the nanostructured CaWO(4) microspheres were studied. The energy transfer processes in CaWO(4):Tb(3+)microspheres were analyzed. The electric dipole-dipole energy transfers related to (5)D(3) level were studied by inspecting the fluorescence decay of (5)D(3) level. The energy transfer critical distance was estimated.  相似文献   

19.
Li X  Huang R  Hu Y  Chen Y  Liu W  Yuan R  Li Z 《Inorganic chemistry》2012,51(11):6245-6250
Bi(2)WO(6) hollow microspheres with dimension of ca. 1.5 μm were synthesized via a hydrothermal method using polystyrene particles as the template. The as-prepared Bi(2)WO(6) hollow microspheres can be further transformed to double-shell Bi(2)O(3)/Bi(2)WO(6) hollow microspheres. The samples were fully characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, N(2)-sorption Brunauer-Emmett-Teller surface area, UV-vis diffuse-reflectance spectroscopy, and X-ray photoelectron spectroscopy. The as-formed double-shell Bi(2)O(3)/Bi(2)WO(6) hollow microspheres exhibit enhanced photocatalytic activity due to the hollow nature and formation of the p-n junction between p-type Bi(2)O(3) and n-type Bi(2)WO(6). The study provides a general and effective method in the fabrication of composition and dimension-tunable composite hollow microspheres with sound heterojunctions that may show a variety of applications.  相似文献   

20.
以KAl(SO4)2和尿素为前驱体,通过微波水热法于180 ℃反应20 min,经600 ℃焙烧2 h制得分级多孔γ-Al2O3空心微球.所制备的样品被用于吸附典型有机染料刚果红(CR)溶液.结果表明,制备的γ-Al2O3空心微球直径为0.8-1.0 μm,厚度约为200 nm.此γ-Al2O3空心微球具有高的比表面积(243 m2·g-1)和分级大孔-中孔结构,此结构非常有利于液相过程中的质量传递.微波水热法制备的γ-Al2O3空心微球比水热法制备的γ-Al2O3和商用的γ-Al2O3样品显示出更快和更强的吸附性能.此样品的吸附数据很好地符合假二级速率方程和Langmuir吸附理论模型.从Langmuir吸附理论模型计算得到微波水热法制备的γ-Al2O3空心微球的最大吸附量(qmax) 25 ℃时高达515.4 mg·g-1.由于具有分等级结构、高比表面积、大的孔容和吸附能力,微波水热法制备的γ-Al2O3空心微球样品有望成为一种具有很好应用潜力的环境吸附剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号