首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The G3/99 test set [L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 112, 7374 (2000)] of thermochemical data for validation of quantum chemical methods is expanded to include 78 additional energies including 14 enthalpies of formation of the first- and second-row nonhydrogen molecules, 58 energies of molecules containing the third-row elements K, Ca, and Ga-Kr, and 6 hydrogen-bonded complexes. The criterion used for selecting the additional systems is the same as before, i.e., experimental uncertainties less than +/- 1 kcal/mol. This new set, referred to as the G3/05 test set, has a total of 454 energies. The G3 and G3X theories are found to have mean absolute deviations of 1.13 and 1.01 kcal/mol, respectively, when applied to the G3/05 test set. Both methods have larger errors for the nonhydrogen subset of 79 species for which they have mean absolute deviations of 2.10 and 1.64 kcal/mol, respectively. On all of the other types of energies the G3 and G3X methods are very reliable. The G3/05 test set is also used to assess density-functional methods including a series of new functionals. The most accurate functional for the G3/05 test set is B98 with a mean absolute deviation of 3.33 kcal/mol, compared to 4.14 kcal/mol for B3LYP. The latter functional has especially large errors for larger molecules with a mean absolute deviation of 9 kcal/mol for molecules having 28 or more valence electrons. For smaller molecules B3LYP does as well or better than B98 and the other functionals. It is found that many of the density-functional methods have significant errors for the larger molecules in the test set.  相似文献   

2.
3.
The correlation-consistent composite approach (ccCA), an ab initio composite technique for computing atomic and molecular energies, recently has been shown to successfully reproduce experimental data for a number of systems. The ccCA is applied to the G3/99 test set, which includes 223 enthalpies of formation, 88 adiabatic ionization potentials, 58 adiabatic electron affinities, and 8 adiabatic proton affinities. Improvements on the original ccCA formalism include replacing the small basis set quadratic configuration interaction computation with a coupled cluster computation, employing a correction for scalar relativistic effects, utilizing the tight-d forms of the second-row correlation-consistent basis sets, and revisiting the basis set chosen for geometry optimization. With two types of complete basis set extrapolation of MP2 energies, ccCA results in an almost zero mean deviation for the G3/99 set (with a best value of -0.10 kcal mol(-1)), and a 0.96 kcal mol(-1) mean absolute deviation, which is equivalent to the accuracy of the G3X model chemistry. There are no optimized or empirical parameters included in the computation of ccCA energies. Except for a few systems to be discussed, ccCA performs as well as or better than Gn methods for most systems containing first-row atoms, while for systems containing second-row atoms, ccCA is an improvement over Gn model chemistries.  相似文献   

4.
The effect of the parent basis set on the basis set superposition error caused by bond functions is investigated systematically. An important difference between BSSE at the SCF and correlated levels is pointed out. Three new basis sets are defined, denoted 6-311 + G(d,p)B, 6-311 + G(2d,p)B, and 6-311 + G(2df,p)B. BSSE for the first-row hydrides seems to increase uniformly with increasing atomic number of the central atom. Expansion of the valence part of the basis set from 6-31G to 6-311G, as well as adding f functions, has a significant effect on the BSSE. Additional BSSEs incurred by bond functions are less than or equal to 1 kcal/mol for the 6-311 + G(2df,p)B basis set. For the dissociation energies of the first-row hydride species, agreement with experiment within only a few kcal/mol can be obtained even without resorting to isogyric reaction cycles. For high-quality calculations, adding bond functions seems to have definite advantages over expanding the polarization space beyond the [2d1f] level.  相似文献   

5.
In this work, we use MP2 and coupled‐cluster with single, double, and perturbative triple excitations [CCSD(T)] as well as their corresponding explicitly correlated (F12) counterparts to compute the interaction energies of water icosamers. The incremental scheme is used to compute benchmark energies at the CCSD(T)/CBS(45) and CCSD(T)(F12*)/cc‐pVQZ‐F12 level of theory. The four structures, dodecahedron, edge sharing, face sharing, and fused cubes, are part of the WATER27 test set and therefore, highly accurate interaction energies are required. All methods applied in this work lead to new benchmark energies for these four systems. To obtain these values, we carefully analyze the convergence of the interaction energies with respect to the basis set. Furthermore, we investigate the influence of the basis set superposition error and the core‐valence correlation. The interaction energies are: dodecahedron ?198.6 kcal/mol, edge sharing ?209.7 kcal/mol, face sharing ?208.0 kcal/mol, and fused cubes ?208.0 kcal/mol. For water clusters, we recommend to use the PW6B95 density functional of Truhlar in combination with Grimme's dispersion correction (D3), as the mean absolute error is 0.9 and the root mean‐squared deviation is only 1.4 kcal/mol. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Energy correctors are introduced for the calculation of molecular energies of compounds containing first row atoms (Li-F) to modify ab initio molecular orbital calculations of energies to better reproduce experimental results. Four additive correctors are introduced to compensate for the differences in the treatment of molecules with different spin multiplicities and multiplicative correctors are also calculated for the electronic and zero-point vibrational energies. These correctors, individually and collectively yield striking improvements in the atomization energies for several ab initio methods. We use as training set the first row subset of molecules from the G1 basis of molecules; when the correctors are applied to other molecules not included in the training set, selected from the G3 basis, similar improvements in the atomization energies are obtained. The special case of the B3PW91/cc-pVTZ yields an average error of 1.2 kcal/mol, which is already within a chemical accuracy and comparable to the Gaussian-n theories accuracy. The very inexpensive B3PW91/6-31G** yields an average error of 2.1 kcal/mol using the correctors. Methods considered unsuitable for energetics such as HF and LSDA yield corrected energies comparable to those obtained with the best highly correlated methods.  相似文献   

7.
Summary The effect of bond functions on the basis set superposition error (BSSE) is investigated at both SCF (self consistent field) and correlated levels for a number of basis sets using the pairwise additive function counterpoise (PAFC), the site-site function counterpoise (SSFC), and the newly proposed successive reaction counterpoise method (SRCP). BSSEs using bond functions are shown to be roughly twice those without bond functions, whereas the latter may still be quite sizeable. The addition of f functions dramatically decreases the bond function BSSE. The results obtained support the empirical decision in our earlier papers to neglect BSSE altogether.  相似文献   

8.
9.
We calculated the equilibrium geometries and harmonic vibrational frequencies of the ground state and five cationic states of dichloroketene using (TD-)B3LYP, PBE0, and M06/M06-2X approaches. The photoelectron spectra of dichloroketene were simulated by computing Franck-Condon factors. The ionization energies were computed using the CCSD(T) approach with extrapolation to the complete basis set (CBS) limit. We propose two new CBS energy formulas (E = ECBS + Aexp(-x) + B/(x−1) n, n = 2 or 3) and compare the performance of different CBS approaches. A new ionic state of dichloroketene belonging to the Cs point group is reported. This state is identified as the first excited state of Cl2CCO+ having a double-well potential-energy curve along the CCO bending mode with a barrier height of 1.335 eV. The simulated photoelectron spectra are in agreement with the experiment. The vertical ionization energies calculated via spectral simulation are more accurate compared with those obtained at the ground-state structure. Among the CBS formulas used, the proposed ansatz with n = 2 performs best, with a mean absolute error of 0.021 and 0.012 eV for the adiabatic and vertical ionization energies, respectively.  相似文献   

10.
A reliable determination of natural and anthropogenic radionuclides in environmental samples is necessary to comply with the radiation protection and environmental regulations. This paper presents the results of the characterisation of massic activities of natural and anthropogenic radionuclides in soil and water matrices produced as test items to conduct the proficiency test ERAD-PT-2013. The proficiency test ERAD-PT-2013 was designed to investigate analytical performance in analysing both natural and anthropogenic radionuclides, to assist laboratories to identify analytical problems, and to improve the quality of measurement results. The proficiency test items, their spectral interferences and the activity concentration levels of the analytes were designed in a way to enable identification of potential analytical problems. Methodologies, data evaluation approach and evaluation of proficiency test results for each radionuclide are described and discussed.  相似文献   

11.
A new method based on an iterative procedure for obtaining accurate atomic inner shell binding energies is described. The method makes use of the doubly modi-fied Moseley plot as the starting point. As an illustration accurate binding energies for the M 1 shell in the atomic number range 57 ≤ Z ≤ 71 have been obtained. This has also resulted in the removal of the anomaly in the M 1 binding energy of Z = 68. Our calculations point to a need for a fresh look at the theoretical calculations of inner shell binding energies for Z = 57 to 71 in which some unsuspected effects appear to occur when the 4f shell is opened, half filled and closed.  相似文献   

12.
The Jarzynski equality is one of the most widely celebrated and scrutinized nonequilibrium work theorems, relating free energy to the external work performed in nonequilibrium transitions. In practice, the required ensemble average of the Boltzmann weights of infinite nonequilibrium transitions is estimated as a finite sample average, resulting in the so-called Jarzynski estimator, . Alternatively, the second-order approximation of the Jarzynski equality, though seldom invoked, is exact for Gaussian distributions and gives rise to the Fluctuation-Dissipation estimator . Here we derive the parametric maximum-likelihood estimator (MLE) of the free energy considering unidirectional work distributions belonging to Gaussian or Gamma families, and compare this estimator to . We further consider bidirectional work distributions belonging to the same families, and compare the corresponding bidirectional to the Bennett acceptance ratio () estimator. We show that, for Gaussian unidirectional work distributions, is in fact the parametric MLE of the free energy, and as such, the most efficient estimator for this statistical family. We observe that and perform better than and , for unidirectional and bidirectional distributions, respectively. These results illustrate that the characterization of the underlying work distribution permits an optimal use of the Jarzynski equality. © 2018 Wiley Periodicals, Inc.  相似文献   

13.
A finite basis set particularly adapted for solving the Hartree-Fock equation for diatomic molecules in prolate spheroidal coordinates has been constructed. These basis functions have been devised as products of B-splines times associated Legendre polynomials. Due to the large number of B-splines, the resulting set of eigenfunctions is amply distributed over excited states. This gives the possibility of using these basis sets to calculate sums over excited states, appearing in various orders of perturbation theory. As an illustration, the second-order corrections to the ground-state energy of some atoms and diatomic molecules with closed electron shells have been calculated.  相似文献   

14.
Experimental enthalpies of formation have been approximated using single-point Hartree–Fock (HF)–self-consistent-field (SCF) total energies plus the rapid estimation of basis set error and correlation energy from partial charges (REBECEP) energy corrections. The energy corrections are calculated from the HF–SCF partial atomic charges and optimized atomic energy parameters. The performance of the method was tested on 51 closed-shell neutral molecules (50 molecules from the G3/99 thermochemistry database plus urea, composed of H, C, N, O, and F atoms). The predictive force of the method is demonstrated, because these larger molecules were not used for the optimization of the atomic parameters. We used the earlier RECEP-3 [HF/6-311+G(2d,p)] and REBECEP [HF/6-31G(d)] atomic parameter sets obtained from the G2/97 thermochemistry database (containing small molecules) together with natural population analysis and Mulliken partial charges. The best results were obtained using the natural population analysis charges, although the Mulliken charges also provide useful results. The root-mean-square deviations from the experimental enthalpies of formation for the selected 51 molecules are 1.15, 3.96, and 2.92 kcal/mol for Gaussian-3, B3LYP/6-11+G(3df,2p), and REBECEP (natural population analysis) enthalpies of formation, respectively (the corresponding average absolute deviations are 0.94, 7.09, and 2.27 kcal/mol, respectively). The REBECEP method performs considerably better for the 51 test molecules with a moderate 6-31G(d) basis set than the B3LYP method with a large 6-311+G(3df,2p) basis set. Received: 10 March 2001 / Accepted: 5 July 2001 / Published online: 11 October 2001  相似文献   

15.
[structure: see text] A new isodesmic additivity scheme based on the energetic relationships among the simplest hydrocarbon molecules reproduces the experimental heats of formation for a broad range of unstrained hydrocarbons with remarkable accuracy. The stabilizations of radicals, double, and triple CC bonds by alkyl substituents (hyperconjugation), as well as the stabilization by 1,3-alkyl group interactions at the same carbon (branching), support conventional interpretations. Statistical data fitting can also be achieved by using only four adjustable parameters.  相似文献   

16.
To explain drug resistance by computer simulations at the molecular level, we first have to assess the accuracy of theoretical predictions. Herein we report an application of the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) technique to the ranking of binding affinities of the inhibitor saquinavir with the wild type (WT) and three resistant mutants of HIV-1 protease: L90M, G48V, and G48V/L90M. For each ligand-protein complex we report 10 ns of fully unrestrained molecular dynamics (MD) simulations with explicit solvent. We investigate convergence, internal consistency, and model dependency of MM/PBSA ligand binding energies. Converged enthalpy and entropy estimates produce ligand binding affinities within 1.5 kcal/mol of experimental values, with a remarkable level of correlation to the experimentally observed ranking of resistance levels. A detailed analysis of the enthalpic/entropic balance of drug-protease interactions explains resistance in L90M in terms of a higher vibrational entropy than in the WT complex, while G48V disrupts critical hydrogen bonds at the inhibitor's binding site and produces an altered, more unfavorable balance of Coulomb and polar desolvation energies.  相似文献   

17.
Correlation-consistent basis sets are developed for the Ti atom. The polarization functions are optimized for the average of the 3F and 5F states. One series of correlation-consistent basis sets is for 3d and 4s correlation, while the second series includes 3s and 3p correlation as well as 3d and 4s correlation. These basis sets are tested using the Ti 3F–5F separation and the dissociation energies of TiCl X4Φ, TiH X4Φ, and TiH+ X3Φ. The CCSD(T) complete basis set limit values are determined by extrapolation. The Douglas–Kroll approach is used to compute the scalar relativistic effect. Spin-orbit effects are taken from experiment and/or are computed at the CASSCF level. The Ti 3F–5F separation is in excellent agreement with experiment, while the TiCl, TiH, and TiH+ bond energies are in good agreement with experiment. Extrapolation with the valence basis set is consistent with other atoms, while including 3s and 3p correlation appears to make extrapolation more difficult. Received: 20 January 1999 / Accepted: 26 February 1999 / Published online: 7 June 1999  相似文献   

18.
A contracted [9s6p2d] basis set derived from Dunning's (14s11p5d) primitive Gaussian set for bromine has been used in ab initio molecular orbital calculations of the dissociation energies of HBr, CH3Br, and Br2, the ionization potentials of Br and HBr, and the electron affinity of Br. The calculated energies are within 0.1 eV of the experimental values. This is similar to the accuracy obtained in a previous study, also using a contracted [9s6p2d] basis set, of the dissociation and ionization energies of the GeHn, AsHn, and SeHn hydrides.  相似文献   

19.
The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds--benzene, mono-, di- and tri-substituted alkylbenzenes--using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号