首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collecting, organizing, and reviewing chemical information associated with screening hits are human time-consuming. The task depends highly on the individual, and human errors may result in missing leads or wasting resources. To overcome these hurdles, we have developed a decision support system, Hits Analysis Database (HAD). HAD is a software tool that automatically generates an ISIS database file containing compound structures, biological activities, calculated properties such as clogP, hazard fragment labels, structure classifications, etc. All data are processed by available software and packed into a single SD file. In addition to search capabilities, HAD provides an overview of structural classes and associated activity statistics. Chemical structures can be organized by maximum common substructure clustering. The ease of use and customized features make HAD a chief tool in lead selection processes.  相似文献   

2.
3.
4.
Understanding the interactions between activating or antagonizing ligands and their cognate receptors at a molecular level offers promise for the development of pharmacological therapeutics for CNS disorders. The discovery of novel molecules that are capable of discriminating between the varied molecular subunits or isoforms of ion channels should provide a more detailed understanding of the pathophysiology of many CNS disorders. Abundant natural sources of pharmacologically active agents that demonstrate this refined selectivity and specificity are found in the animal toxins of venomous species including: snakes, spiders and the marine snail of the genus Conus. The uniquely fascinating combinatorial ability of the marine snail, genus Conus to modify the pharmacological properties of these neurotoxins or conopeptides within its venom is depicted throughout this review. The myriad of posttranslational modifications and disulfide bonded architectures that have been identified in the conopeptides, are described with an emphasis on the unique pharmacological properties and receptor target specificities that have been ascribed to each of these modifications. The ability of NMR spectroscopy to provide three-dimensional structural information within the interaction interface for both the ligand and target protein following complex formation and its application to conopeptide drug discovery are discussed. Similarly, the strength of merging NMR spectroscopy data with ab initio "restrained soft-docking" for rational pharmacophore design and the identification of lead compounds from in silico library screens will also be discussed. The initial phases of this stratagem are illustrated using two toxin antagonists and the recently determined structure of the KcsA potassium channel. These data exemplify the utility of this approach in elucidating important molecular interfaces of specific toxin-receptor/ion channel complexes, which can be further exploited in drug discovery initiatives.  相似文献   

5.
6.
7.
8.
9.
One-dimensional NMR spectroscopy has proven to be a powerful technique for screening compound libraries in drug discovery. We report a novel water ligand-observed gradient spectroscopy (WaterLOGSY) pulse sequence, named Aroma WaterLOGSY, that selectively detects aromatic WaterLOGSY signals from compounds or ligands. In the Aroma WaterLOGSY, water magnetization is untouched after water excitation and utilizes the whole period of the remaining pulse sequence to relax back to the +z direction. Due to the phase cycling design, the water magnetization is allowed to relax for the period of two full scans before it gets inverted again. Therefore, the recycle delay can be significantly shortened. Within similar experimental time, Aroma WaterLOGSY shows approximately two times higher sensitivity than the standard scheme. This method also allows the use of non-deuterated reagents, thereby accelerating experimental set-up time for ligand-binding studies.  相似文献   

10.
[structures: see text] We have conducted key preliminary studies into the in vitro and in vivo cytotoxicity of panaxytriol. Through total synthesis, we prepared and evaluated several synthetic panaxytriol analogues, each of which exhibited enhanced cytotoxicity relative to the natural product. Consequently, we have begun to chart the first in vitro SAR map for the compound, which suggests that the C3 hydroxyl functionality is not critical for biological activity and that, in fact, engagement of the C9-C10 diol as an acetonide actually leads to notably enhanced cytotoxicity. Furthermore, through in vivo investigations, we demonstrated that panaxytriol and panaxytriol acetonide (12) moderately suppress tumor growth with little or no toxicity. Finally, preliminary in vitro evaluation of panaxytriol indicates that it possesses neurotrophic activity.  相似文献   

11.
12.
A Si(IV)-naphthalocyanine bearing two methoxyethylenglycol axial ligands to the centrally coordinated metal ion (SiNc) was prepared by chemical synthesis and assayed for the phototherapeutic activity after administration in a Cremophor formulation to C57BI/6 mice bearing a subcutaneously transplanted Lewis lung carcinoma or B16 pigmented melanoma. Pharmacokinetic studies indicate that the maximal accumulation in the tumour occurs at 24 h after intraperitoneal injection of 0.5 mg kg−1 of SiNc, although the naphthalocyanine concentration in the Lewis lung carcinoma (0.70 μg g−1) is significantly larger than that in the B16 pigmented melanoma (0.15 μg g−1). This result in a higher selectivity of tumour targeting in the case of the lung carcinoma. Photodynamic therapy (782 nm, 370 mW cm−2, 360 J cm−2) at 24 h after SiNc injection causes an efficient tumour response for Lewis lung carcinoma (50% lower tumour diameter on day 19 post-treatment as compared to untreated controls) while the pigmented melanoma shows only a minor response regarding the rate of tumour growth.  相似文献   

13.
Release of calcein and griseofulvin (GRF) from control (gels in which solutes are dissolved in) and liposomal gels was studied using agarose-assisted immobilization as a technique to separate gels from drug-receptor compartments. Liposomes composed of phosphatidylcholine (PC) or distearoyl-glycero-PC and cholesterol (DSPC/Chol), and incorporating calcein or GRF were prepared by thin film hydration. After cleaning the liposomes they were dispersed in different hydrogels (carbopol 974 [1, 1.5 or 2% (w/w)], hydroxylethyl-cellulose (HEC) [4% (w/w)], or a mixture of the two), and release of calcein or GRF was followed by fluorescence or photometric technique, respectively. Results show that calcein release from liposomal gels is slower compared to control gels, and can be further retarded by using rigid-membrane liposomes (faster release from PC-liposome compared to DSPC/Chol-liposome gels). Additionally, calcein release is not affected by the lipid amount loaded (in the range from 2 to 8 mg/ml), therefore solute loading can be controlled according to needs.

Oppositely, GRF release from liposomal gels is determined by drug loading. At high drug loading levels (compared to GRF aqueous solubility), GRF is released with constant rate from liposomal gels irrespective of liposome type (PC or DSPC/Chol). Thereby, for amphiphilic/lipophilic drugs, drug properties (solubility, log P) determine the system behavior.

Calcein and GRF release from control carbopol gels is faster compared to HEC and mixture gels. The same is true for calcein in liposomal gels. Carbopol gel rheological properties were found to be significantly different (compared to the other gels), implying that these characteristics are important for drug diffusion from gels.  相似文献   


14.
Drug metabolism can have profound effects on the pharmacological and toxicological profile of therapeutic agents. In the pharmaceutical industry, many in vitro techniques are in place or under development to screen and optimize compounds for favorable metabolic properties in the drug discovery phase. These in vitro technologies are meant to address important issues such as: (1) is the compound a potent inhibitor of drug metabolising enzymes (DMEs)? (2) does the compound induce the expression of DMEs? (3) how labile is the compound to metabolic degradation? (4) which specific enzyme(s) is responsible for the compound's biotransformation? and (5) to which metabolites is the compound metabolized? Answers to these questions provide a basis for judging whether a compound is likely to have acceptable pharmacokinetic properties in vivo. To address these issues on the increasing number of compounds inundating the drug discovery programs, high throughput assays are essential. A combination of biochemical advances in the understanding of the function and regulation of DMEs (in particular, cytochromes P450, CYPs) and automated analytical technologies are revolutionizing drug metabolism research. Automated LC-MS based metabolic stability, fluorescence, radiometric and LC-MS based CYP inhibition assays are now in routine use. Automatible models for studying CYP induction based on enzyme activity, quantitative RT-PCR and reporter gene systems are being developed. We will review the utility and limitations of these HTS approaches and highlight on-going developments and emerging technologies to answer metabolism questions at the different stages of the drug discovery process.  相似文献   

15.
16.
17.
Mani  N.  Sathya  B.  Prasath  M. 《Research on Chemical Intermediates》2022,48(6):2363-2390
Research on Chemical Intermediates - Tuberculosis (TB) is a potentially fatal infectious illness affecting mostly the lungs. Tuberculosis bacteria are communicated from person to person via minute...  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号