首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对圆柱形管道外部的流体与颗粒介质运动问题,提出了结合圆柱周围声辐射力和声流Stokes力的研究方法。从柱体外部声流方程出发,得到影响涡流结构的无量纲参数Rem≥325.27时,外涡最大流速大于内涡最大流速。在此基础上,采用Nyborg的边界滑移速度理论,获得管道外部声流的极限滑移速度,推导得出圆柱附近的声辐射力公式。基于此公式,在理论上推导出颗粒速度为0、声辐射力和声流Stokes力平衡时,颗粒临界直径的表达式。通过对圆柱位于不同位置时,圆柱外部的颗粒运动进行仿真模拟,得到与理论公式相一致的结论:颗粒的临界直径的大小与声波频率有关,当颗粒直径小于临界直径时,声流Stokes力为主导,颗粒随声流运动,颗粒直径大于等于临界直径时,声辐射力为主导,颗粒在声辐射力作用下逐渐向声辐射力的节点聚集。理论与仿真结果表明该方法可用于分析管道外颗粒的分布状态,其研究结果有助于解决电站中换热器的管道结垢、热交换率降低等问题。  相似文献   

2.
针对一定声场作用下自由空间中的球形粒子,首先分析了声散射过程中的吸收声功率、散射声功率和损失声功率以及三者之间的关系,并通过计算发现了由于参数选取不当导致的负吸收现象。接着从动量守恒定律出发推导了声辐射力的一般表达式,阐释了声辐射力与声能流之间的关系,并从理论和计算两方面验证了负向声辐射力的存在。当负向声辐射力产生时,声波的背向散射被抑制。在此基础上,进一步研究了粒子的偏心特性和流体的黏度这两种常见因素对负向声辐射力的影响。利用球函数的加法公式推导了偏心球的散射系数和声辐射力公式,结果显示偏心距离、粒子的材料等都会显著改变负向声辐射力的产生条件。在低频近似下,由于流体黏度附加的正向声辐射力是否能完全抵消原来的负向声辐射力将决定最终的声辐射力方向。该结果对利用负向声辐射力制成单行波声学镊子来实现对特定粒子的操控有着理论指导意义。   相似文献   

3.
Ultrasonic standing waves can be used to generate radiation forces on particles within a fluid. A number of authors have derived detailed representations of these forces but these are most commonly applied using an approximation to the energy distribution based upon an idealized standing wave within a mode based upon rigid boundaries. An electro-acoustic model of the acoustic energy distribution within a standing wave with arbitrary thickness boundaries has been expanded to model the radiation force on an example particle within the acoustic field. This is used to examine the force profile on a particle at resonances other than those predicted with rigid boundaries, and with pressure nodes at different positions. A simple analytical method for predicting modal conditions for combinations of frequencies and layer thickness characteristics is presented, which predicts that resonances can exist that will produce a pressure node at arbitrary positions in the fluid layer of such a system. This can be used to design resonators that will drive particles to positions other than the center of the fluid layer, including the fluid/solid boundary of the layer, with significant potential applications in sensing systems. Further, the model also predicts conditions for multiple subwavelength resonances within the fluid layer of a single resonator, each resonance having different nodal planes for particle concentration.  相似文献   

4.
利用外加声场促进悬浮在气相中的细颗粒发生相互作用,进而引起颗粒的碰撞和凝并,使得颗粒平均粒径增大、数目浓度降低,是控制细颗粒排放的重要技术途径.为探究驻波声场中单分散细颗粒的相互作用,建立包含曳力、重力、声尾流效应的颗粒相互作用模型,采用四阶经典龙格-库塔算法和二阶隐式亚当斯插值算法对模型进行求解.将数值模拟得到的颗粒声波夹带速度和相互作用过程与相应的解析解和实验结果进行对比,验证模型的准确性.进而研究颗粒初始条件和直径对相互作用特性的影响.结果表明,初始时刻颗粒中心连线越接近声波波动方向、颗粒位置越接近波腹点,颗粒间的声尾流效应就越强,颗粒发生碰撞所需要的时间就越短.研究还发现,颗粒直径对颗粒相互作用的影响取决于初始时刻颗粒中心连线偏离声波波动方向的程度.当偏离较小时,颗粒直径越大,颗粒发生碰撞所需要的时间越短;当偏离很大时,直径较小的颗粒能够发生碰撞,而直径较大的颗粒则无法发生碰撞.  相似文献   

5.
This paper reports a method to generate tunable bottle beams using an ultrasonic lens, by which the bottle position can be precisely adjusted with the change of the acoustic frequency. Therefore, the position of a single particle or bubble in liquid can be manipulated without using phased array which is costly and huge with complex circuits. Furthermore, we introduced this method to multiple bubble manipulation using acoustic holography. The bottle properties against frequency are theoretically and experimentally analyzed. It is shown that the bottle position depends almost linearly on the operating frequency, which provides a basis for the precise manipulation of bubbles and particles. In addition, the relationship between the acoustic radiation force and the drag force under different incident acoustic pressures is considered, establishing a limit on the moving velocity of the trapped particles. The ultrasonic field observation is further demonstrated by Schlieren imaging system. The proposed method has potential biomedical applications, such as more flexible cell manipulation and targeted drug delivery in vivo, as well as potential applications in the study of chemical reactions between micro objects.  相似文献   

6.
Mitri FG 《Ultrasonics》2006,44(3):244-258
In this paper, analytical equations are derived for the time-averaged radiation force induced by progressive and standing acoustic waves incident on elastic spherical shells covered with a layer of viscoelastic and sound-absorbing material. The fluid surrounding the shells is considered compressible and nonviscous. The incident field is assumed to be moderate so that the scattered field from the shells is taken to linear approximation. The analytical results are illustrated by means of a numerical example in which the radiation force function curves are displayed, with particular emphasis on the coating thickness and the content of the hollow region of the shells. The fluid-loading on the radiation force function curves is analysed as well. This study attempts to generalize the various treatments of radiation force due to both progressive and standing waves on spherically-shaped structures immersed in ideal fluids. The results show that various ways can be effectively used for damping resonance peaks, such as by changing the fluid in the interior hollow region of the shells or by changing the coating thickness.  相似文献   

7.
Particles suspended in a fluid will experience forces from stationary acoustic fields. The magnitude of the force depends on the time-averaged energy density of the field and the material properties of the particles and fluid. Forces acting on known particles smaller than 20 microm were studied. Within a 500 kHz acoustic beam generated by a plane-piston circular source, observations were made of the geometry of the particle column that is formed. Varying the acoustic energy altered the column width in a manner predicted by equations for the primary acoustic radiation force from scattering of particles in the long-wavelength limit. The minimum pressures required to trap gas, solid, and liquid particles in a water medium at room temperature were also estimated to within 12%. These results highlight the ability of stationary acoustic fields from a plane-piston radiator to impose nano-Newton-scale forces onto fluid particles with properties similar to biological cells, and suggest that it is possible to accurately quantify these forces.  相似文献   

8.
Qin Chang 《中国物理 B》2022,31(4):44302-044302
Acoustic manipulation is one of the well-known technologies of particle control and a top research in acoustic field. Calculation of acoustic radiation force on a particle nearby boundaries is one of the critical tasks, as it approximates realistic applications. Nevertheless, it is quite difficult to solve the problem by theoretical method when the boundary conditions are intricate. In this study, we present a finite element method numerical model for the acoustic radiation force exerting on a rigid cylindrical particle immersed in fluid near a rigid corner. The effects of the boundaries on acoustic radiation force of a rigid cylinder are analyzed with particular emphasis on the non-dimensional frequency and the distance from the center of cylinder to each boundary. The results reveal that these parameters play important roles in acoustic manipulation for particle-nearby complicated rigid boundaries. This study verifies the feasibility of numerical analysis on the issue of acoustic radiation force calculation close to complex boundaries, which may provide a new idea on analyzing the acoustic particle manipulation in confined space.  相似文献   

9.
The aim of this paper is to compare two different methods for the calculation of the ultrasonic output power of underwater transducers: the radiation force balance, which is the standard method, and the laser heterodyne interferometry, which is rather used to depict displacement or velocity distributions of the acoustic field. Here it is shown that the latter can also be used to calculate the acoustic time-average power with an uncertainty of about 22%, the radiation force balance giving an uncertainty of 12% (with 95% confidence). The interferometry experiments performed with two transducers working at 2.25 MHz and 8.25 MHz showed that they produce different acoustic fields (respectively Gaussian and Lorentz-sigmoidal distributions). Taking into account the acoustic field profiles, the acoustic time-average power from interferometry was calculated. It was found very similar to the time-average power measured with the radiation force balance in the plane-wave assumption.  相似文献   

10.
何君君  李玉芬  殷杰 《应用声学》2016,35(5):431-437
超声造影剂的定向输运在超声医学成像领域有着极为重要的意义,而声辐射力作用是实现该过程的关键,相比于高斯声束,准高斯声束是无源亥姆霍兹方程的精确解,可以使用标准波分解法简化计算。因此,本文研究了准高斯声束对超声造影剂的声辐射力作用。文章首先分析了准高斯声束与高斯声束之间的相关性;随后通过数值计算求得了准高斯声束对超声造影剂模型的声辐射力函数与无量纲频率之间的关系;最后,本文研究了不同造影剂气泡情况下的声辐射力。研究结果表明:声辐射力函数随无量纲频率变化将在不同位置出现共振峰,不同的波束宽度值将改变辐射力强度,但不改变共振峰的位置。相关结果可为利用声辐射力定向输运超声造影剂至靶向位置提供理论参考。  相似文献   

11.
Based on the analytic expressions for the radiated field of a circular concave piston given by Hasegawa et al.,an integral for calculation of the radiation force on a plane absorbing target in a spherically focused field is derived.A general relation between acoustic power P and normal radiation force Fn is obtained under the condition of kr 1.Numerical computation is carried out by using the symbolic computation program for practically focused sources and absorbing circular targets.The results show that,for a given source,there is a range of target positions where the radiation force is independent of the target's position under the assumption that the contribution of the acoustic field behind the target to the radiation force can be neglected.The experiments are carried out and confirm that there is a range of target positions where the measured radiation force is basically independent of the target's position even at high acoustic power (up to 700 W).It is believed that when the radiation force method is used to measure the acoustic power radiated from a focused source,the size of the target must be selected in such a way that no observable sound can be found in the region behind the target.  相似文献   

12.
臧雨宸 《计算物理》2020,37(4):459-466
从声波的散射理论出发,利用级数展开法得到高斯波束的波束因子,推导其对阻抗边界下离轴球形粒子声辐射力.针对刚性球与液体球两种球形粒子进行数值模拟,与自由空间的情况进行比较.讨论边界反射系数、粒子与边界距离、束腰半径以及离轴角度与距离等对声辐射力的影响.仿真结果表明:边界反射系数的增大会引起声辐射力的增加,但不改变峰值的位置;在合适的频率处,可以产生负向声辐射力;声辐射力随粒子与边界距离呈周期性变化;束腰半径的影响主要体现在中高频;随着粒子偏离传播轴的距离和角度增大,声辐射力明显衰减.该研究为利用高斯波束实现对粒子的操纵提供理论基础.  相似文献   

13.
在实际的声操控中,由于声辐射力、表面张力和重力的共同作用,液滴往往呈现出椭球的形状,在螺旋声场中会受到力矩的作用而发生转动。从声波的散射理论出发,根据部分波展开法求解得到了椭球形液滴在Bessel驻波场中的声散射系数,并给出了其受到的声辐射转矩的解析式。在此基础上,对椭球形不可压缩液滴和椭球形可压缩液滴分别进行数值计算。仿真结果表明,不可压缩液滴的声辐射转矩与声束半锥角的关系更密切,而可压缩液滴则更依赖于特定的频率;提升Bessel驻波场的阶数有利于增强声辐射转矩的峰值,但在中低频处较难对可压缩液滴产生明显的力矩。该研究结果预期对利用螺旋声场进行液滴的操控具有理论指导作用。   相似文献   

14.
利用部分波展开法求解得到了Gauss声束入射下刚性和非刚性椭圆柱的声散射系数,推导了一般情况下的声辐射力矩表达式.在此基础上,通过一系列数值仿真详细分析了离轴距离、入射角度和束腰半径对声辐射力矩的影响.结果表明:正向与负向声辐射力矩均可以在一定条件下存在;低频情况下刚性椭圆柱比非刚性椭圆柱更容易产生较强的声辐射力矩;特定频率的入射声场可以激发出非刚性椭圆柱不同阶的共振散射模式,因而非刚性椭圆柱的声辐射力矩峰值与频率的关系更密切;增加束腰半径有利于扩大散射截面,进而增加椭圆柱的声辐射力矩.该研究结果预期可以为利用声辐射力矩实现粒子的可控旋转和流体黏度的反演提供一定的理论指导.  相似文献   

15.
随着科学技术的发展,声辐射力在生物医学领域得到了更为广泛的应用,尤其是在弹性成像领域.为了使弹性成像技术更加精准,对声辐射力的预测至关重要.该文基于腹壁组织图像,利用k-Wave对超声波在腹壁组织区域传播时的声场进行数值模拟,获得了其声场分布,进而求得了组织中声辐射力分布情况,同时对面阵换能器的阵元宽度、间距、阵元个数...  相似文献   

16.
Oberti S  Neild A  Möller D  Dual J 《Ultrasonics》2008,48(6-7):529-536
The use of acoustic radiation forces for the manipulation and positioning of micrometer sized particles has shown to be a promising approach. Resonant excitation of a system containing a particle laden fluid filled cavity, can (depending on the mode excited) result in positioning of the particles in parallel lines (1-D) or distinct clumps in a grid formation (2-D) due to the high amplitude standing pressure fields that arise in the fluid. In a broader context, the alignment of particles using acoustic forces can be used to assist manipulation processes which utilise an external mechanical tool, for instance a microgripper. In such a system, particles can be removed sequentially from a line formed by acoustic forces within a microfluidic channel, hence allowing a degree of automation. In order to fully automate the gripping process, the particles must be confined to a repeatable and accurate location in two dimensions (assuming that in the third dimension they sit on the lower surface of the channel). Only in this way it is possible to remove subsequent particles by simply bringing the gripper to a known location and activating its fingers. This combined use of acoustic forces and mechanical gripping requires that one extremity of the channel is open. However, the presence of the liquid-air interface which occurs at this opening, causes the standing pressure field to decay to zero towards the opening. In a volume of liquid in proximity to the interface positioning of particles by acoustic forces is therefore no longer possible. In addition, the longitudinal gradient of the field can cause a drift of particles towards the longitudinal center of the channel at some frequencies, undesirably moving them further away from the interface, and so further from the gripper. As a solution the use of microfluidic flow induced drag forces in addition to the acoustic force potential has been investigated.  相似文献   

17.
许家旗  胡恒山 《应用声学》2019,38(3):293-301
声波远探测中波场是非轴对称的,采用数值算法计算波场会耗费大量时间,无法满足实际测井数据实时处理的需求。为了解决这一问题,该文采用解析法分别计算辐射场和井外界面反射波激发的井内响应。首先利用鞍点法获得井内声源的远场辐射波场,并与实轴积分获得的精确结果进行比较验证解的正确性。然后将反射波等效为集中力的辐射波,利用集中力与井内声源的互易关系获得反射波激发的井内波场解,该解答与有限差分模拟结果一致。该方法为远探测的正演模拟和远探测结果的及时评价提供了有效手段。  相似文献   

18.
A procedure is demonstrated to quantitatively evaluate the acoustic radiation forces in microfluidic particle manipulation chambers. Typical estimates of the acoustic pressure and the acoustic radiation force are based on an analytical solution for a simple one-dimensional standing wave pattern. The complexities of a typical microfluidic channel limit the usefulness of this approach. By leveraging finite elements, and a generalized equation for the acoustic radiation force, channel designs can be investigated in two and three dimensions. Calculations and experimental observations in this report and the literature, confirm these claims.  相似文献   

19.
The acoustic radiation force resulting from acoustic waves have been extensively studied for the contact-free generation of organized patterning arrays. The precise arrangement of microscopic objects clustered at the pressure nodes is critical to the development of functional structures and patterned surfaces. However, the size of the clusters is restricted by the saturation limit of the acoustic nodes. Here, we present a bulk acoustic wave (BAW) platform, which employs a two-dimensional acoustic wave to propel particles of various sizes. Experimentally, when particles are large, significant acoustic energy is scattered and partly absorbed by the matched layers in front of the sensors. The acoustic radiation force from a convergent acoustic pressure field agglomerates the large polystyrene (PS) particles towards the central region instead of the pressure nodes. The parametric analysis has been performed to assess the transition in the particles from clustering at the organized nodal arrays to agglomerating in the central region, which is a function of particle size, particle concentration, and load voltage. Statistically, the particles can agglomerate with a cluster ratio greater than 70%, and this ratio can be improved by increasing the load power/voltage supplied to the transducers. With its ability to perform biocompatible, label-free, and contact-free self-assembly, this concept offers a new possibility in the fabrication of colloidal layers, the recreation of tissue microstructure, the development of organoid spheroid cultures, the migration of microorganisms, and the assembly of bioprinting materials.  相似文献   

20.
Townsend RJ  Hill M  Harris NR  White NM 《Ultrasonics》2006,44(Z1):e467-e471
Within an acoustic standing wave particles experience acoustic radiation forces, a phenomenon which is exploited in particle or cell manipulation devices. When developing such devices, one-dimensional acoustic characteristics corresponding to the transducer(s) are typically of most importance and determine the primary radiation forces acting on the particles. However, radiation forces have also been observed to act in the lateral direction, perpendicular to the primary radiation force, forming striated patterns. These lateral forces are due to lateral variations in the acoustic field influenced by the geometry and materials used in the resonator. The ability to control them would present an advantage where their effect is either detrimental or beneficial to the particle manipulation process. The two-dimensional characteristics of an ultrasonic separator device have been modelled within a finite element analysis (FEA) package. The fluid chamber of the device, within which the standing wave is produced, has a width to height ratio of approximately 30:1 and it is across the height that a half-wavelength standing wave is produced to control particle movement. Two-dimensional modal analyses have calculated resonant frequencies which agree well with both the one-dimensional modelling of the device and experimentally measured frequencies. However, these two-dimensional analyses also reveal that these modes exhibit distinctive periodic variations in the acoustic pressure field across the width of the fluid chamber. Such variations lead to lateral radiation forces forming particle bands (striations) and are indicative of enclosure modes. The striation spacings predicted by the FEA simulations for several modes compare well with those measured experimentally for the ultrasonic particle separator device. It is also shown that device geometry and materials control enclosure modes and therefore the strength and characteristics of lateral radiation forces, suggesting the potential use of FEA in designing for the control of enclosure modes in similar particle manipulator devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号