首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
乙二醇溶液中圆锥泡声致发光的发光特性   总被引:1,自引:0,他引:1       下载免费PDF全文
利用一种改进后的U形管圆锥泡声致发光装置,研究了乙二醇溶液中圆锥泡声致发光的发光特性.实验结果表明,利用乙二醇溶液可以得到超强的单个发光脉冲,其脉冲宽度可以达到150 μs,其值远远高于其他方式产生的声致发光的脉冲宽度.测量得到的光谱为一从紫外到可见光波长范围的连续谱,在589 nm附近叠加有钠的3P-3S原子发射谱线.在钠的原子发射谱线两侧测量得到了Na-Ar分子激发态跃迁形成的蓝卫星带,并在声致发光实验中测得了Na-Ar的红卫星带以及钠的3S-4S原子发射谱线. 关键词: 圆锥泡声致发光 光脉冲 光谱 卫星带  相似文献   

2.
圆锥气泡发光的光谱性质   总被引:1,自引:0,他引:1       下载免费PDF全文
在改进的U型管装置中观察到一种圆锥气泡声致发光现象。声致发光产生的单个光脉冲的能量可达到约1.4 毫焦. 脉冲宽度约100 毫秒。发光光谱由连续光谱上叠加C2,CN,和CH的激发态光谱构成。这种圆锥气泡声致发光为单泡声致发光和多泡声致发光提供了一种联系。  相似文献   

3.
Sonoluminescence     
《应用光谱学评论》2013,48(3):399-436
Abstract

Sonoluminescence is the light emission phenomenon from collapsing bubbles in liquid irradiated by an ultrasonic wave. In the present review, theoretical and experimental studies of the two types of sonoluminescence [single‐bubble sonoluminescence (SBSL) and multibubble sonoluminescence (MBSL)] are described. SBSL is a sonoluminescence from a single stably pulsating bubble trapped at the pressure antinode of a standing ultrasonic wave. MBSL is a sonoluminescence occurring from many bubbles in liquid irradiated by an ultrasonic wave. The theoretical and experimental studies suggest that SBSL originates in emissions from plasma inside the heated bubble at the bubble collapse, whereas MBSL originates both in emissions from plasma and in chemiluminescence inside heated bubbles at the bubble collapse. Unsolved problems of sonoluminescence have also been explained in detail.  相似文献   

4.
丙三醇溶液声致发光中的黑体辐射谱   总被引:1,自引:0,他引:1  
利用U型管圆锥泡声致发光装置,测量到了丙三醇溶液中圆锥泡声致发光的光谱和光脉冲。结果表明,测量得到的发光光谱为光滑的连续谱,且与理论模拟得到的黑体辐射谱相吻合,拟合温度分布于2 600~3 500 K范围内。文章从空间和时间两方面分析了圆锥泡空化发光中存在黑体辐射的原因:较大的气泡体积(气泡塌缩半径为1.4 cm)与较长的发光时间(几十微秒)。另外,实验研究表明随着发光波长的增长,光脉冲宽度变宽,从而进一步证明了圆锥泡声致发光中的黑体辐射机制。最后,利用测量得到的发光光谱和脉冲计算得到了发光光强为0.18 J,远远高于其他方式得到的声致发光光强。  相似文献   

5.
We modify a uniform model of single bubble sonoluminescence, in which heat diffusion, water vapor diffusion and chemical reactions are included to describe the bubble dynamics, and the processes of electron-atom bremsstrahlung, electron-ion bremsstrahlung and recombination radiation, radiative attachment of electrons to atoms and molecules, line emissions of OH radicals and Na atoms are taken into account to calculate the light emission. With this model, we compute the light pulse width, the photon number per flash, the continuum and line spectra and the gas species as the products of chemical reactions, and try to compare with all the experimental data available. We obtain good agreement with the observations of Ar and Xe bubbles in many cases, but fail to match the experimental data of the photon number per flash. We also find that for He bubble the computed photon number is always too small to interpret the observations. Supported by the National Natural Science Foundation of China (Grant Nos. 10674081 and 10434070)  相似文献   

6.
在U型管声致发光装置的基础上建立了一套新型的声致发光装置—直管圆锥泡声致发光装置,详细地介绍了此装置的结构和实验操作步骤,利用此装置得到了超强的发光脉冲。测量得到了乙二醇溶液中圆锥泡声致发光的发光脉冲,结果显示脉冲半宽度大约为80 μs左右,远远高于其他声致发光形式所产生的脉冲宽度,这主要是由于圆锥泡可以获得远远高于超声声致发光中气泡所能得到的能量。发光光谱为一从紫外光至可见光波长范围的连续谱,上面叠加C2d3Πgd3Πu的跃迁形成的五个序列谱带,分别对应于Δν=-2,Δν=-1,Δν=0,Δν=1和Δν=2;同时叠加有CN的B2Σ+→X 2Σ+跃迁形成的3个序列谱带和CH的A2Δ→X 2Π 跃迁谱带。特别是实验中测量得到了斯旺带光谱序列谱带清晰的振动结构。最后,通过与理论模拟得到的斯旺带光谱相对强度的比较,估算得到了C2分子的振动温度大约为(4 200±200) K。  相似文献   

7.
Cavitation effects in pulsed laser ablation can cause severe deformation of tissue near the ablation site. In angioplasty, they result in a harmful dilatation and invagination of the vessel walls. We suggest to reduce cavitation effects by dividing the laser pulse energy into a pre-pulse with low and an ablation pulse with high energy. The pre-pulse creates a small cavitation bubble which can be filled by the ablation products of the main pulse. For suitable energy ratios between the pulses, this bubble will not be enlarged by the ablation products, and the maximal bubble size remains much smaller than after a single ablation pulse. The concept was analyzed by numerical calculations based on the Gilmore model of cavitation dynamics and by high-speed photography of the effects of single and double pulses performed with a silicone tube as vessel model. The use of double pulses prevents the deformation of the vessel walls. The concept works with an energy ratio of up to about 1:30 between the pulses. For the calculated optimal ratio of 1:14.6, the bubble volume is reduced by a factor of 17.7. The ablation pulse is best applied when the pre-pulse bubble is maximally expanded, but the timing is not very critical.  相似文献   

8.
Single-bubble sonoluminescence is characterized by a great concentration of energy during the collapse of a gas bubble, which leads to the generation of photons from low-frequency ultrasound. The narrow stability domain of sonoluminescence has limited previous attempts to reinforce this inertial confinement in order to generate photons of higher energy or to ignite a nuclear fusion reaction. We present a new experimental approach where an ultrasonic pulse of high frequency is adaptively focused on the bubble during the collapse. Using an array of eight transmitters, a pressure pulse of 0.7 MPa doubles the flash intensity; this technique can easily be extended to higher pressure.  相似文献   

9.
Thresholds for cavitation produced in water by pulsed ultrasound   总被引:1,自引:0,他引:1  
The threshold for transient cavitation produced in water by pulsed ultrasound was measured as a function of pulse duration and pulse repetition frequency at both 0.98 and 2.30 MHz. The cavitation events were detected with a passive acoustic technique which relies upon the scattering of the irradiation field by the bubble clouds associated with the events. The results indicate that the threshold is independent of pulse duration and acoustic frequency for pulses longer than approximately 10 acoustic cycles. The threshold increases for shorter pulses. The cavitation events are likely to be associated with bubble clouds rather than single bubbles.  相似文献   

10.
陈岐岱  王龙 《物理》2004,33(12):913-917
介绍两种使用流体动力学实现声致发光的方法:刹管法和U管圆锥泡法.这两种方法的设备简单,操作方便,容易在普通物理实验中进行,所得结果和传统单泡声致发光有所不同.U管圆锥泡法创造了发光功率和单脉冲能量的新记录,并首次用条纹相机得到了时间分辨发射光谱.  相似文献   

11.
A modified U-tube conical bubble sonoluminescence device is used to study the conical bubble photoluminescence. The spectra of conical bubble sonoluminescence at different concentrations of rhodamine 6G (Rh6G) solution in 1,2-propanediol have been measured. Results show that the sonoluminescence from the conical bubbles can directly excite Rh6G, which in turn can fluoresce. The light emission of this kind is referred to as conical bubble photoluminescence. The maximum of fluorescence spectral line intensity in the conical bubble photoluminescence has a red shift in relative to that of the standard photo-excited fluorescence, which is due to the higher self-absorption of Rh6G, and the spectral line of conical bubble photoluminescence is broadened in width compared with that of photo-excited fluorescence.  相似文献   

12.
Does water vapor prevent upscaling sonoluminescence?   总被引:3,自引:0,他引:3  
Experimental results for single-bubble sonoluminescence of air bubbles at very low frequency f = 7.1 kHz are presented: In contrast to the predictions of a recent model [S. Hilgenfeldt and D. Lohse, Phys. Rev. Lett. 82, 1036 (1999)], the bubbles are only as bright (10(4)-10(5) photons per pulse) and the pulses as long (approximately 150 ps) as at f = 20 kHz. We can theoretically account for this effect by incorporating water vapor into the model: During the rapid bubble collapse a large amount of water vapor is trapped inside the bubble, resulting in an increased heat capacity and hence lower temperatures, i.e., hindering upscaling. At this low frequency water vapor also dominates the light emission process.  相似文献   

13.
徐宁 《物理》2000,29(5):257-258
对单泡声致发光过程采用等离子体描述,考虑了各种等离子体输运过程,假设了声致发光的轫致辐射机制,数值模拟的结果与实验很好地吻合,有力地支持了声致发光的热转向的解释,预言了声致发光中可能出现的极端电现象,对各物理量时空剖面的分析表明,强电场的出现中能产生的Rayleigh-Taylor不稳定性有制约作用,这可能是声致发光约10^12能量汇集的原因之一。  相似文献   

14.
The effect of the second and later pulses on the expansion dynamics of the cavitation bubble produced by multi-pulse microchip laser irradiation of a Cu target in water has been investigated. We clarified the bubble dynamics by taking shadowgraph images and measuring the bubble radius as a function of time. Shock waves were also measured to investigate the explosive expansion of the bubble. As a result, the second and later pulses did not cause an explosive expansion, and the ablation of the target by these pulses was rather mild, although they had a certain contribution to the expansion of the bubble. The energies given to the bubble expansion from the first pulse and also from the second pulse were estimated by comparing the experimental results with the calculation based on the Rayleigh model.  相似文献   

15.
The radial and translational oscillations of a single cavitation bubble in a standing ultrasound wave were investigated experimentally at various driving acoustic pressures for aqueous ethanol solutions with different bulk molar fractions of ethanol range of 0-1.3 × 10(-3). The results show that both the lower and upper stability thresholds of the acoustic driving pressure decreased as the concentration of ethanol was increased. At a given driving pressure the ambient and maximum bubble sizes increased with increasing ethanol concentration. In addition, as the ethanol was increased, the sonoluminescence intensity decreased while the bubble dynamics remained largely unchanged. The translational oscillation of the levitated bubble, however, became increasingly violent with increasing ethanol concentration. The displacement of the bubble reached 0.7 mm at the highest concentration studied (1.3 × 10(-3)) and the maximum bubble size was found to change as the bubble jumped up and down. This bubble translation may be responsible for the decrease of the acoustic driving pressure threshold and suggests that repetitive injection of ethanol molecules into the bubble takes place. These results may account for the different sensitivities of single bubble and multi-bubble sonoluminescence to the presence of volatile additives.  相似文献   

16.
The dynamical evolution of magnetic stray fields has been investigated at the initial stage of magnetization reversal of a microstructured cobalt film (Co dots). Quantitative measurements of the domain magnetization and of the shift of the domain boundaries have been performed at 1 ns intervals. The measurements were performed using an emission electron microscope. The photoelectrons were excited from a sample using well-defined synchrotron-radiation pulses in single bunch operation mode (UE56/1-PGM at BESSY II, Berlin). The magnetization movement was initiated by an external magnetic field pulse, the pulse width being 8 ns. The magnetic field pulse was synchronized with the synchrotron single bunch radiation pulses. The lateral and time resolutions of the applied pulses were 50 nm and 500 ps, respectively. PACS 31.70.Hq; 68.37.Xy; 75.70.-i; 75.75.+a  相似文献   

17.
磁芯材料脉冲间叠加复位研究   总被引:5,自引:5,他引:0       下载免费PDF全文
 介绍了通过反向叠加长脉冲的方法,在双脉冲间隔小于1 μs的情况下对直线感应加速器磁芯进行的脉冲间复位实验,复位后波形幅度得到了明显改善,在最大伏秒值280 kV×100 ns的单脉冲感应腔上得到了两个伏秒值为200 kV×100 ns的感应脉冲。实验表明:当主脉冲脉宽小于100 ns,间隔大于500 ns时,采用脉冲间叠加复位的方法,将主脉冲叠加在一个反向的长脉冲上(脉宽大于10 μs,最大幅度约为主脉冲的20%)形成正负脉冲串,能有效提高感应加速腔磁芯的利用率,且对感应主脉冲没有明显影响,使单脉冲直线感应加速器的多脉冲改造成为可能。  相似文献   

18.
A powerful experimental approach to measure the size distribution of bubbles active in sonoluminescence and/or sonochemistry is a technique based on pulsed ultrasound and sonoluminescence emission. While it is an accepted technique, it is still lacking an understanding of the effect of various experimental parameters, including the duration of the pulse on-time, the nature of the dissolved gas, the presence of a gas flow rate, etc. The present work, focusing on Ar-saturated water sonicated at 362 kHz, shows that increasing the pulse on-time leads to the measurement of coalesced bubbles. Reducing the on-time to a minimum and/or adding sodium dodecyl sulfate to water allows to reducing coalescence so that natural active cavitation bubble sizes can be measured. A radius of 2.9–3.0 µm is obtained in Ar-saturated water at 362 kHz. The effects of acoustic power and possible formation of a standing-wave on coalescence and measured bubble sizes are discussed.  相似文献   

19.
The detailed link of liquid phase sonochemical reactions and bubble dynamics is still not sufficiently known. To further clarify this issue, we image sonoluminescence and bubble oscillations, translations, and shapes in an acoustic cavitation setup at 23 kHz in sulfuric acid with dissolved sodium sulfate and xenon gas saturation. The colour of sonoluminescence varies in a way that emissions from excited non-volatile sodium atoms are prominently observed far from the acoustic horn emitter (“red region”), while such emissions are nearly absent close to the horn tip (“blue region”). High-speed images reveal the dynamics of distinct bubble populations that can partly be linked to the different emission regions. In particular, we see smaller strongly collapsing spherical bubbles within the blue region, while larger bubbles with a liquid jet during collapse dominate the red region. The jetting is induced by the fast bubble translation, which is a consequence of acoustic (Bjerknes) forces in the ultrasonic field. Numerical simulations with a spherical single bubble model reproduce quantitatively the volume oscillations and fast translation of the sodium emitting bubbles. Additionally, their intermittent stopping is explained by multistability in a hysteretic parameter range. The findings confirm the assumption that bubble deformations are responsible for pronounced sodium sonoluminescence. Notably the observed translation induced jetting appears to serve as efficient mixing mechanism of liquid into the heated gas phase of collapsing bubbles, thus potentially promoting liquid phase sonochemistry in general.  相似文献   

20.
Previous works on single bubble sonoluminescence in sulfuric acid solutions have stressed the fact that the sonoluminescence (SL) emissions are the highest ever found, but at the same time the bubble moves in orbits. We have fixed the SL bubble spatially and at the same time we have reached higher SL emissions using another harmonic acoustic signal to produce the acoustic excitation. Multiple harmonic excitation produces up to a fourfold increase in SL emissions, reaching the peak value of about 40 microW for a moving bubble and 15 microW for a nonmoving bubble. The ability to have a bright stationary bubble also opens new research opportunities. In particular, we develop a new method to measure the absolute radius evolution of the bubble that exploits this stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号