首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of DNA‐based nanomaterials in biomedical applications is continuing to grow, yet more emphasis is being put on the need for guaranteed structural stability of DNA nanostructures in physiological conditions. Various methods have been developed to stabilize DNA origami against low concentrations of divalent cations and the presence of nucleases. However, existing strategies typically require the complete encapsulation of nanostructures, which makes accessing the encased DNA strands difficult, or chemical modification, such as covalent crosslinking of DNA strands. We present a stabilization method involving the synthesis of DNA brick nanostructures with dendritic oligonucleotides attached to the outer surface. We find that nanostructures assembled from DNA brick motifs remain stable against denaturation without any chemical modifications. Furthermore, densely coating the outer surface of DNA brick nanostructures with dendritic oligonucleotides prevents nuclease digestion.  相似文献   

2.
碳纳米材料是一类推动能源存储、 多相催化、 高性能复合和生物医药等领域发展的重要材料, 可控合成碳纳米材料对相关领域的发展具有重要意义. 水滑石(LDHs)材料具有层板金属种类及含量可调等特点, 经焙烧、 还原后可制备出金属种类、 密度和粒径分布各异的高分散、 高稳定金属纳米催化剂, 可实现高效催化生长各种类型的碳纳米材料. 此外, 通过调控反应条件和反应器等, 可以影响LDHs基金属纳米催化剂催化生长的碳纳米材料的结构和性能. 本文总结了LDHs基金属纳米催化剂的可控制备、 碳纳米材料结构调控以及利用LDHs基催化剂制备的碳纳米材料的应用等方面的研究工作, 并阐明了催化剂的可控制备是控制合成碳纳米材料的核心手段, 这为利用LDHs基催化剂进一步合成更高性能碳纳米材料的研究指明了方向. 此外, 本文还结合近些年在光、 电及光热催化方面的研究进展, 展望了基于新型LDHs纳米结构生长碳纳米材料的研究前景.  相似文献   

3.
Complex DNA nanostructures have been developed as structural components for the construction of nanoscale objects. Recent advances have enabled self-assembly of organized DNA nanolattices and their use in patterning functional bio-macromolecules and other nanomaterials. Adapter molecules that bind specifically to both DNA lattices and nanomaterials would be useful components in a molecular construction kit for patterned nanodevices. Herein we describe the selection from phage display libraries of single-chain antibodies (scFv) for binding to a specific DNA aptamer and their development as adapter molecules for nanoscale construction. We demonstrate the decoration of various DNA tile structures with aptamers and show binding of the selected single-chain antibody as well as the self-assembly of mixed DNA-protein biomolecular lattices.  相似文献   

4.
The use of DNA networks as templates for forming nanoarrays of metallic centres shows an exciting potential to generate addressable nanostructures. Inorganic units can be photoactive, electroactive and/or can possess magnetic and catalytic properties and can adopt different spatial arrangements due to their varied coordination nature. All these properties influence both the structure and function of passive DNA scaffolds and provide DNA nanostructures as a new platform for new materials in emerging technologies, such as nanotechnology, biosensing or biocomputing.  相似文献   

5.
Yolk/shell or 'rattle-typed' nanomaterials with nanoparticle cores inside hollow shells are interesting among the complex hollow nanostructures. Yolk/shell nanoparticles (YSNs) are promising functional nanomaterials for a variety of applications such as catalysis, delivery, lithium-ion batteries and biosensors due to their tailorability and functionality in both the cores and hollow shells. This feature article provides an overview of advances in this exciting area of YSNs, covering systematic synthesis approaches and key promising applications based on the literature and our own recent work. We present some strategies for the synthesis of YSNs with controllable sizes, compositions, geometries, structures and functionalities. Applications of these new materials in a wide range of potential areas are discussed including nanoreactors, biomedicine and lithium-ion batteries. Promising future directions of this active research field are also highlighted.  相似文献   

6.
This review will focus on the synthesis, arrangement, structural assembly, for current and future applications, of 1D nanomaterials (tubes, wires, rods) in 2D and 3D ordered arrangements. The ability to synthesize and arrange one dimensional nanomaterials into ordered 2D or 3D micro or macro sized structures is of utmost importance in developing new devices and applications of these materials. Micro and macro sized architectures based on such 1D nanomaterials (e.g. tubes, wires, rods) provide a platform to integrate nanostructures at a larger and thus manageable scale into high performance electronic devices like field effect transistors, as chemo- and biosensors, catalysts, or in energy material applications. Carbon based, metal oxide and metal based 1D arranged materials as well as hybrid or composite 1D materials of the latter provide a broad materials platform, offering a perspective for new entries into fascinating structures and future applications of such assembled architectures. These architectures allow bridging the gap between 1D nanostructures and the micro and macro world and are the basis for an assembly of 1D materials into higher hierarchy domains. This critical review is intended to provide an interesting starting point to view the current state of the art and show perspectives for future developments in this field. The emphasis is on selected nanomaterials and the possibilities for building three dimensional arrays starting from one dimensional building blocks. Carbon nanotubes, metal oxide nanotubes and nanowires (e.g. ZnO, TiO(2), V(2)O(5), Cu(2)O, NiO, Fe(2)O(3)), silicon and germanium nanowires, and group III-V or II-VI based 1D semiconductor nanostructures like GaS and GaN, pure metals as well as 1D hybrid materials and their higher organized architectures (foremost in 3D) will be focussed. These materials have been the most intensively studied within the last 5-10 years with respect to nano-micro integration aspects and their functional and application oriented properties. The critical review should be interesting for a broader scientific community (chemists, physicists, material scientists) interested in synthetic and functional material aspects of 1D materials as well as their integration into next higher organized architectures.  相似文献   

7.
本文对合成TiO2一维纳米材料及其有序纳米阵列的阳极氧化法、模板法以及水热法进行了全面而系统的评述,着重介绍了它们的最新研究进展。阳极氧化法能制备牢固负载于基体上的TiO2纳米管阵列,这有助于构筑TiO2纳米结构及其在纳米器件上的应用;与多种制备技术如溶胶-凝胶工艺、电化学沉积以及原子层沉积等相结合,模板法可以合成出多种形貌的TiO2纳米材料如纳米管、纳米线和纳米棒,并且可以通过改变所用模板的微观尺寸来调控TiO2一维纳米材料及其有序阵列的微结构参数;水热合成法可以制备出直径小且比表面积大的TiO2纳米管粉末。从目前来看,该法还不能制备出牢固负载于基体上的有序纳米阵列。文章最后指出了TiO2一维纳米材料及其有序纳米阵列合成中存在的问题及今后发展方向。  相似文献   

8.
纳米有序体系的模板合成及其应用   总被引:10,自引:0,他引:10  
包建春  徐正 《无机化学学报》2002,18(10):965-975
评述了以含有高密度的纳米柱形孔道的Al2O3膜和有机聚合物膜为模板,制备金属、合金、氧化物、半导体和聚合物及其复合组份的一维纳米结构有序阵列的几种方法、纳米结构的性质和应用的研究进展。可用于模板合成的方法有电化学沉积法、化学镀、化学聚合、化学气相沉积和溶胶-凝胶法等。取决于孔壁和所填充材料的化学性质,所得阵列既可以是由纳米管也可以是由纳米线组成。这样的有序阵列在光学、磁学、催化及电化学等领域有着重要的应用前景。制备新型复合纳米结构有序阵列、开展纳米器件的研制是模板合成研究领域的重要方向。  相似文献   

9.
超分子自组装是发展超分子电子学的重要途径。随着纳米科学和技术的迅速发展,自组装技术已成功地应用于纳米尺度物质的维数、形貌和功能等的调控。作为构筑分子水平上一维、二维、三维有序功能结构和高有序分子聚集态结构的关键技术,超分子自组装技术有力地推动了具有优良光、电、磁性能的分子材料和纳米功能材料更深层次的研究。本文综述了超分子自组装在富勒烯科学领域的基础研究和应用,特别是对有利于自组织和自组装功能的富勒烯基衍生物的设计与合成、超分子作用力引导的具有特定结构的分子体系的可控自组装、以及富勒烯分子聚集态结构材料的光物理过程、超分子中电子转移和能量转移现象进行了描述;并对卟啉、四硫富瓦烯、碗烯和杯芳烃等一系列富π电子化合物和大环主体分子等包含[60]富勒烯的主体化合物的超分子作用和超分自组装体以及通过氢键、π-π作用、静电力和范德华力和金属配位作用形成的[60]富勒烯超分子自组装体进行了总结,对未来发展进行了展望。  相似文献   

10.
Kim J  Li Z  Park I 《Lab on a chip》2011,11(11):1946-1951
Integration of functional nanostructures within a microfluidic device can synergize the advantages of both unique properties of nanomaterials and diverse functionalities of microfluidics. In this paper, we report a novel and simple method for the in situ synthesis and integration of ZnO nanowires by controlled hydrothermal reaction within microfluidic devices. By modulating synthesis parameters such as the seed preparation, synthesis time, and heating locations, the morphology and location of synthesized nanowires can be easily controlled. The applications of such nanostructure-integrated microfluidics for particle trapping and chemiresistive pH sensing were demonstrated.  相似文献   

11.
无机纳米晶的形貌调控及生长机理研究   总被引:6,自引:0,他引:6  
形貌及尺寸规整可控的纳米晶体的合成是目前十分引人注目的纳米材料研究领域.制备合成中的形貌调控及其功能化是这些纳米材料能够得到应用的关键问题.研究者们希望在纳米晶的任一阶段均能实现控制并在期望的阶段停止,从而得到尺寸、形态、结构及组成确定的纳米晶体.本文综述了近年来无机纳米晶体的典型合成路径,深入探讨了纳米晶在成核、生长及熟化阶段的控制原理,研究了液相合成纳米材料过程中晶体结构与生长行为的相关性问题,并总结了几类具有代表性的低维、多维纳米晶体的形成规律和生长机理.探索纳米粒子的调控合成对于纳米材料的规模化生产及应用具有重要的理论价值和指导意义.  相似文献   

12.
Nowadays, functionalized conducting polymer nanomaterials have been received great attention in nanoscience and nanotechnology because of their large surface area. This article reviews various methods for synthesis of conducting polymer nanostructures and their applications in sensing materials, focusing on hard-template, soft-template and other methods and the formation mechanism of conducting polymer nanostructures by these methods. Conducting polymer nanostructures, such as nanotubes, nanowires, and nanoparticles, as sensing platforms for various applications are also summarized.  相似文献   

13.
The controlled synthesis of inorganic micro- and nanostructures with tailored morphologies and patterns has attracted intensive interest because the properties and performances of micro- and nanostructured materials are largely dependent on the shape and structure of the primary building blocks and the way in which the building blocks are assembled or integrated. This review summarizes the recent advances on the solution-phase synthesis of inorganic micro- and nanostructures with controlled morphologies and patterns via three typical colloidal chemical routes, i.e., synthesis based on catanionic micelles, reactive templates, and colloidal crystal templates, with focus on the approaches developed in our lab. Firstly, catanionic micelles formed by mixed cationic/anionic surfactants are used as effective reaction media for the shape-controlled synthesis of inorganic nanocrystals and the solution growth of hierarchical superstructures assembled by one-dimensional (1D) nanostructures. Secondly, reactive template-directed chemical transformation strategy provides a simple and versatile route to fabricate both hollow structures and 1D nanostructures. Thirdly, colloidal crystals are employed as very effective templates for the facile solution-phase synthesis of novel inorganic structures with controlled patterns, such as three-dimensionally (3D) ordered macroporous materials and two-dimensionally (2D) patterned nanoarrays and nanonets. Finally, a brief outlook on the future development in this area is presented.  相似文献   

14.
模板法在纳米材料的合成过程中已成为一种非常重要的技术。利用其结构导向、骨架填充、平衡和匹配电荷等作用,可以达到精确地调控纳米材料孔道的大小、形状及结构的目的。本文主要对模板剂的种类进行了详细的分类,重点介绍了硬模板法和软模板法在合成纳米材料过程中的现状及特点,并具体介绍了模板剂在合成纳米生物材料及纳米催化剂、电化学、化工合成等方面的应用;阐述了模板法在介孔材料合成过程中的重要性,指出了目前模板剂方法存在的优缺点;提出了模板剂在超分子功能材料、光化学反应及催化工业等方面应用的纳米材料合成中的发展趋势和良好前景。  相似文献   

15.
As a biologically active macromolecule, deoxyribonucleic acid(DNA) has the advantages of sequence programmability and structure controllability and can accurately transmit sequence information to specific biological functions. Facing the complex internal microenvironment and heterogeneity in tumor treatment, the construction and applications of DNA-based nanomaterials have become a focus point of research. In particular, the hybridization of DNA molecules with other materials endows DNA-based na...  相似文献   

16.
In the past few decades, brain diseases have taken a heavy toll on human health and social systems. Magnetic resonance imaging (MRI), photoacoustic imaging (PA), computed tomography (CT), and other imaging modes play important roles in disease prevention and treatment. However, the disadvantages of traditional imaging mode, such as long imaging time and large noise, limit the effective diagnosis of diseases, and reduce the precision treatment of diseases. The ever-growing applications of inorganic nanomaterials in biomedicine provide an exciting way to develop novel imaging systems. Moreover, these nanomaterials with special physicochemical characteristics can be modified by surface modification or combined with functional materials to improve targeting in different diseases of the brain to achieve accurate imaging of disease regions. This article reviews the potential applications of different types of inorganic nanomaterials in vivo imaging and in vitro detection of different brain disease models in recent years. In addition, the future trends, opportunities, and disadvantages of inorganic nanomaterials in the application of brain diseases are also discussed. Additionally, recommendations for improving the sensitivity and accuracy of inorganic nanomaterials in screening/diagnosis of brain diseases.  相似文献   

17.
Recently, low dimension nanostructures have gained considerable attention due to their technological potential as unique types of nanoscale building blocks for future optoelectronic devices and systems. Semiconducting composite nanomaterials, which can combine the advantages of two or more components, have been the focus in the area of nanomaterials synthesis and device application.In this paper, we report our work on the preparation of composite nanomaterials based on CNTs.CNTs were coated by organic or inorganic species via novel and facile methods (Fig. 1 and Fig.2).These functional CNTs based composites show eminent prospects and opportunities for new applications in a wide variation of areas.  相似文献   

18.
多糖在金属纳米材料合成中的应用   总被引:2,自引:0,他引:2  
徐峰  彭长兰  吕宏霞 《化学进展》2008,20(2):273-279
利用多糖及其衍生物的特殊结构及性质合成纳米材料已成为纳米材料制备领域的新兴研究课题,引起了研究者广泛关注.多糖及其衍生物在纳米材料合成过程中可以起还原剂和稳定剂的作用,且反应完成后易于降解、无环境污染,因此多糖及其衍生物已成为纳米合成中理想的绿色原料.本文对近年来多糖及其衍生物在纳米材料合成中的应用进展做了简要总结和评述.  相似文献   

19.
The fundamental understanding of the relationship between crystal structure and the dynamic processes of anisotropic growth on the nanoscale, and exploration of the key factors governing the evolution of physical properties in functional nanomaterials, have become two of the most urgent and challenging issues in the fabrication and exploitation of functional nanomaterials with designed properties and the development of nanoscale devices. Herein, we show how structural and kinetic factors govern the tendency for anisotropic growth of such materials under hydrothermal conditions, and how the crystal structure and morphology influence the optical properties of Ln3+-doped nanocrystals. The synthesis of phase-pure and single-crystalline monoclinic, hexagonal, and tetragonal one-dimensional LnPO4 nanostructures of different aspect ratios by means of kinetically controlled hydrothermal growth processes is demonstrated. It is shown that the tendency for anisotropic growth under hydrothermal conditions can be enhanced simply by modifying the chemical potentials of species in the reaction solution through the use of carefully selected chelating ligands. A systematic study of the photoluminescence of various Eu3+-doped lanthanide phosphates has revealed that the optical properties of these nanophosphors are strongly dependent on their crystal structures and morphologies.  相似文献   

20.
无机纳米材料在能源、生物医学等领域应用非常广泛,过去几十年间关于无机纳米材料合成方法的研究一直受到广泛关注。自然界中普遍存在的生物矿化过程赋予了生物体合成含有特殊结构和功能的无机纳米材料的能力。微生物体系合成的无机纳米材料具有环境友好、成本低廉、生物相容性好等优点,正成为纳米材料科学的一个重要研究领域。我们主要聚焦于微生物体系合成无机纳米材料的机理、影响因素、材料分类及其应用,总结了近年来关于微生物体系合成无机纳米材料的研究历程,并对该领域面临的挑战及未来的发展方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号