首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It is shown that the equations of motion for a charged massive particle are consequences of the field equations in Kaluza unification theory of gravitation and electromagnetism, i.e., the equations of motion for the particle can be deduced from Kaluza field equations, just as that in Einstein's theory of motion of general relativity the equations of motion for a massive particle are consequences of the Einstein equations. Furthermore, the Lorentz equations for a particle maving in the Maxwell electromagnetic field on the Minkowskian space-time can also be obtained from the Maxwell equations by means of the Kaluze mechanism of the Maxwell theory.  相似文献   

2.
吴可  郭汉英 《物理学报》1982,31(10):1443-1448
本文指出,如同在广义相对论中粒子运动方程是场方程的推论一样,在引力场与电磁场的Kaluza统一理论中,粒子的运动方程也是场方程的一个推论,即带电粒子在引力场和电磁场中的运动方程可以从Kaluza统一理论中的场方程推导出来。本文进而在Minkowski时空的条件下,借助Maxwell理论的Kaluza形式,得到Maxwell方程也包含了带电粒子运动方程的结论。 关键词:  相似文献   

3.
Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations.  相似文献   

4.
In this study, the octonion algebra and its general properties are defined by the Cayley–Dickson’s multiplication rules for octonion units. The field equations, potential equations and Maxwell equations for electromagnetism are investigated with the octonionic equations and these equations can be compared with their vectorial representations. The potential and wave equations for fields with sources are also provided. By using Maxwell equations, a Lorenz-like condition is newly suggested for electromagnetism. The existing equations including the photon mass provide the most acknowledged Lorenz condition for the magnetic monopole and the source.  相似文献   

5.
Given a choice of a timelike vector field, a particle distribution function in a general curved space-time can be analysed into spherical harmonics; the Liouville and Boltzmann equations can then be written as a set of equations relating these spherical harmonic components. We obtain these equations and the resulting equations for the spherical harmonic moments of the distribution function. An orthonormal tetrad formalism is used as an aid in our calculations; the set of moment equations used can be completed by giving Einstein's field equations as equations for the rotation coefficients of this tetrad. We discuss time and space reversal symmetry properties of the Boltzmann equation, but leave applications of the set of equations obtained to further papers.  相似文献   

6.
7.
We propose a simple and direct method for generating travelling wave solutions for nonlinear integrable equations. We illustrate how nontrivial solutions for the KdV, the mKdV and the Boussinesq equations can be obtained from simple solutions of linear equations. We describe how using this method, a soliton solution of the KdV equation can yield soliton solutions for the mKdV as well as the Boussinesq equations. Similarly, starting with cnoidal solutions of the KdV equation, we can obtain the corresponding solutions for the mKdV as well as the Boussinesq equations. Simple solutions of linear equations can also lead to cnoidal solutions of nonlinear systems. Finally, we propose and solve some new families of KdV equations and show how soliton solutions are also obtained for the higher order equations of the KdV hierarchy using this method.  相似文献   

8.
9.
The possibility of forming stable bound plasmon-polariton states in an extended metallic cylinder surrounded by a two-level medium has been investigated. The dynamics of plasmons is described in the hydrodynamic approximation. It has been shown that the equations of motion of charge-density bunches and the Bloch equations for the two-level medium are reduced in certain approximations to integrable equations for both transverse and longitudinal plasmons. In the former case, the initial system of equations after the application of the slow-envelope approximation is reduced to equations equivalent to the Maxwell-Bloch equations. In the latter case, the equations describe wave dynamics beyond the slow-envelope approximation. In the approximation of unidirectional wave propagation, the initial system of equations is reduced to equations related to the reduced Maxwell-Bloch equations. Soliton and breather-like solutions of the derived equations describe plasmon-exciton self-induced transparency.  相似文献   

10.
Based on a novel extended version of the Lagrange equations for systems containing non-material volumes, the nonlinear equations of motion for cantilever pipe systems conveying fluid are deduced. An alternative to existing methods utilizing Newtonian balance equations or Hamilton's principle is thus provided. The application of the extended Lagrange equations in combination with a Ritz method directly results in a set of nonlinear ordinary differential equations of motion, as opposed to the methods of derivation previously published, which result in partial differential equations. The pipe is modeled as a Euler elastica, where large deflections are considered without order-of-magnitude assumptions. For the equations of motion, a dimensional reduction with arbitrary order of approximation is introduced afterwards and compared with existing lower-order formulations from the literature. The effects of nonlinearities in the equations of motion are studied numerically. The numerical solutions of the extended Lagrange equations of the cantilever pipe system are compared with a second approach based on discrete masses and modeled in the framework of the multibody software HOTINT/MBS. Instability phenomena for an increasing number of discrete masses are presented and convergence towards the solution for pipes conveying fluid is shown.  相似文献   

11.
We derive the Langevin equations for a spin interacting with a heat bath, starting from a fully dynamical treatment. The obtained equations are non-Markovian with multiplicative fluctuations and concommitant dissipative terms obeying the fluctuation-dissipation theorem. In the Markovian limit our equations reduce to the phenomenological equations proposed by Kubo and Hashitsume. The perturbative treatment on our equations lead to Landau-Lifshitz equations and to other known results in the literature.  相似文献   

12.
We construct explicit Darboux transformations of arbitrary order for a class of generalized, linear Schrödinger equations. Our construction contains the well-known Darboux transformations for Schrödinger equations with position-dependent mass, Schrödinger equations coupled to a vector potential and Schrödinger equations for weighted energy.  相似文献   

13.
We present a new method of a direct derivation of differential equations for the wave-function components of identical-pariticles systems. The method generates in a simple manner all the possible variants of these equations. In some cases they are the differential equations of Faddeev of Yakubovskii. It is shown that the case of the bound states allows to formulate very simple equations for the components which are equivalent to the Schrödinger equation for the complete wave function. The components with a minimal antisymmetry are defined and the corresponding equations are derived.  相似文献   

14.
G. Costanza 《Physica A》2009,388(13):2600-2622
The continuum evolution equations are derived from updating rules for three classes of stochastic models. The first class corresponds to models whose stochastic continuum equations are of the Langevin type obtained after carrying out a “local average” known as coarse-graining. The second class consists of a hierarchy of continuum equations for the correlations of the dynamical variables obtained after making an average over realizations. This average generates a hierarchy of deterministic partial differential equations except when the dynamical variables do not depend on the values of the neighboring dynamical variables, in which case a hierarchy of ordinary differential equations is obtained. The third class of evolution equations for the correlations of the dynamical variable constitutes another hierarchy after calculating an average over both realizations and all the sites of the lattice. This double average generates a hierarchy of deterministic ordinary differential equations. The second and third classes of equations are truncated using a mean field (m,n)-closure approximation in order to obtain a finite set of equations. Illustrative examples of every class are given.  相似文献   

15.
Dynamical equations describing evolution of state functions in space-time of a given metric are important components of physical theories of particles. A method based on a group of the metric is used to obtain an infinite set of general dynamical equations for a scalar and analytical function representing free and spinless particles. It is shown that this set of equations is the same for any group of the metric that consists of an invariant Abelian subgroup of translations in time and space. For Galilean space-time, such group is the extended Galilei group. Using this group, it is proved that the infinite set of equations has only one subset of Galilean invariant dynamical equations, and that the equations of this subset are Schr?dinger-like equations.  相似文献   

16.
The evolution of lump solutions for the Zakharov-Kuznetsov equation and the surface electromigration equation, which describes mass transport along the surface of nanoconductors, is studied. Approximate equations are developed for these equations, these approximate equations including the important effect of the dispersive radiation shed by the lumps as they evolve. The approximate equations show that lump-like initial conditions evolve into lump soliton solutions for both the Zakharov-Kuznetsov equation and the surface electromigration equations. Solutions of the approximate equations, within their range of applicability, are found to be in good agreement with full numerical solutions of the governing equations. The asymptotic and numerical results predict that localized disturbances will always evolve into nanosolitons. Finally, it is found that dispersive radiation plays a more dominant role in the evolution of lumps for the electromigration equations than for the Zakharov-Kuznetsov equation.  相似文献   

17.
A nonlinear, self-consistent and multimode analysis of the orotron is presented. The field in the cavity is expanded into the Hermite-Gaussian modes with time-dependent amplitudes, for which a set of ordinary differential equations is obtained from Maxwell's equations. The equations for the amplitudes are coupled to the equations of motion for the electrons. To yield a self-consistent solution, this set of coupled equations is solved simultaneously. The calculations yield transient and steady state behaviour, saturated efficiency, mode competition and multi-frequency behaviour.  相似文献   

18.
A connection between the Einstein and Yang-Mills equations   总被引:1,自引:0,他引:1  
It is our purpose here to show an unusual relationship between the Einstein equations and the Yang-Mills equations. We give a correspondence between solutions of the self-dual Einstein vacuum equations and the self-dual Yang-Mills equations with a special choice of gauge group. The extension of the argument to the full Yang-Mills equations yields Einstein's unifield equations. We try to incorporate the full Einstein vacuum equations, but the approach is incomplete. We first consider Yang-Mills theory for an arbitrary Lie-algebra with the condition that the connection 1-form and curvature are constant on Minkowski space. This leads to a set of algebraic equations on the connection components. We then specialize the Lie-algebra to be the (infinite dimensional) Lie-algebra of a group of diffeomorphisms of some manifold. The algebraic equations then become differential equations for four vector fields on the manifold on which the diffeomorphisms act. In the self-dual case, if we choose the connection components from the Lie-algebra of the volume preserving 4-dimensional diffeomorphism group, the resulting equations are the same as those obtained by Ashtekar, Jacobsen and Smolin, in their remarkable simplification of the self-dual Einstein vacuum equations. (An alternative derivation of the same equations begins with the self-dual Yang-Mills connection now depending only on the time, then choosing the Lie algebra as that of the volume preserving 3-dimensional diffeomorphisms.) When the reduced full Yang-Mills equations are used in the same context, we get Einstein's equations for his unified theory based on absolute parallelism. To incorporate the full Einsteinvacuum equations we use as the Lie group the semi-direct product of the diffeomorphism group of a 4-dimensional manifold with the group of frame rotations of anSO(1, 3) bundle over the 4-manifold. This last approach, however, yields equations more general than the vacuum equations.Andrew Mellon Postdoctoral fellow and Fulbright ScholarSupported in part by NSF grant no. PHY 80023  相似文献   

19.
Structural equations and Mei conserved quantity of Mei symmetry for Appell equations in a holonomic system with redundant coordinates are studied. Some aspects, including the differential equations of motion, the definition and the criterion of Mei symmetry, the form of structural equations and Mei conserved quantity of Mei symmetry of Appell equations for a holonomic system with redundant coordinates, are also investigated. Finally, an example is given to illustrate the application of the results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号