首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimation of ultrasonic attenuation in a bone using coded excitation   总被引:3,自引:0,他引:3  
This paper describes a novel approach to estimate broadband ultrasound attenuation (BUA) in a bone structure in human in vivo using coded excitation. BUA is an accepted indicator for assessment of osteoporosis. In the tested approach a coded acoustic signal is emitted and then the received echoes are compressed into brief, high amplitude pulses making use of matched filters and correlation receivers. In this way the acoustic peak pressure amplitude probing the tissue can be markedly decreased whereas the average transmitted intensity increases proportionally to the length of the code. This paper examines the properties of three different transmission schemes, based on Barker code, chirp and Golay code. The system designed is capable of generating 16 bits complementary Golay code (CGC), linear frequency modulated (LFM) chirp and 13-bit Barker code (BC) at 0.5 and 1 MHz center frequencies. Both in vivo data acquired from healthy heel bones and in vitro data obtained from human calcaneus were examined and the comparison between the results using coded excitation and two cycles sine burst is presented. It is shown that CGC system allows the effective range of frequencies employed in the measurement of broadband acoustic energy attenuation in the trabecular bone to be doubled in comparison to the standard 0.5 MHz pulse transmission. The algorithm used to calculate the pairs of Golay sequences of the different length, which provide the temporal side-lobe cancellation is also presented. Current efforts are focused on adapting the system developed for operation in pulse-echo mode; this would allow examination and diagnosis of bones with limited access such as hip bone.  相似文献   

2.
Commercial devices for the ultrasonic characterisation of bone normally report the broadband ultrasonic attenuation (BUA). This is the slope of the attenuation against frequency in some part of the frequency range 200–1000 kHz. The assumption is that the relationship is linear and hence independent of the frequency range selected. In this study the ultrasonic attenuation in the frequency range 200 to 800 kHz was measured with a variety of transducers in ten trabecular heel bone samples from elderly cadavers, assumed to be osteoporotic.

The results indicate that the attenuation fits better to a second order polynomial function of frequency, than to the linear fit. The use of a straight line fit is only satisfactory in the higher frequency ranges (above 400 kHz). The use of lower frequencies results in a significant measurement error caused by the combination of a poor signal to noise ratio and the departure from linearity and this is greatest for samples with low attenuation. In the worst cases this can amount to a 30% discrepancy between the BUA values measured over different frequency ranges.  相似文献   


3.
4.
A model describing the frequency dependence of backscatter coefficient from trabecular bone is presented. Scattering is assumed to originate from the surfaces of trabeculae, which are modeled as long thin cylinders with radii small compared with the ultrasonic wavelength. Experimental ultrasonic measurements at 500 kHz, 1 MHz, and 2.25 MHz from a wire target and from trabecular bone samples from human calcaneus in vitro are reported. In both cases, measurements are in good agreement with theory. For mediolateral insonification of calcaneus at low frequencies, including the typical diagnostic range (near 500 kHz), backscatter coefficient is proportional to frequency cubed. At higher frequencies, the frequency response flattens out. The data also suggest that at diagnostic frequencies, multiple scattering effects on the average are relatively small for the samples investigated. Finally, at diagnostic frequencies, the data suggest that absorption is likely to be a larger component of attenuation than scattering.  相似文献   

5.
黄凯  他得安  王威琪 《应用声学》2009,28(4):308-313
骨质疏松症是一种骨强度下降的全身性骨骼疾病,骨强度的下降是骨量减少和骨微结构退化的共同结果。相比于传统的超声透射方法,超声背散射法可提供更多的骨微结构信息,而对于松质骨结构的建模能有助于结构信息的获取。本文将骨小梁简化为单圆柱模型(圆柱状的单根骨小梁浸于骨髓中),并基于此模型对超声背散射与频率的关系进行分析。用铝线代替骨小梁做仿体实验,通过实验与理论结果的比较来验证单圆柱模型的可行性。  相似文献   

6.
This paper concerns the ultrasonic characterization of human cancellous bone samples by solving the inverse problem using experimental transmitted signals. The ultrasonic propagation in cancellous bone is modeled using the Biot theory modified by the Johnson et al. model for viscous exchange between fluid and structure. The sensitivity of the Young modulus and the Poisson ratio of the skeletal frame is studied showing their effect on the fast and slow wave forms. The inverse problem is solved numerically by the least squares method. Five parameters are inverted: the porosity, tortuosity, viscous characteristic length, Young modulus, and Poisson ratio of the skeletal frame. The minimization of the discrepancy between experiment and theory is made in the time domain. The inverse problem is shown to be well posed, and its solution to be unique. Experimental results for slow and fast waves transmitted through human cancellous bone samples are given and compared with theoretical predictions.  相似文献   

7.
In this study, ultrasonic backscattering signals in cancellous bones were obtained by finite difference time domain (FDTD) simulations, and the effect of trabecular material properties on these signals was analyzed. The backscatter coefficient (BSC) and integrated backscatter coefficient (IBC) were numerically investigated for varying trabecular bone material properties, including density, Lame coefficients, viscosities, and resistance coefficients. The results show that the BSC is a complex function of trabecular bone density, and the IBC increases as density increases. The BSC and IBC increase with the first and second Lame coefficients. While not very sensitive to the second viscosity of the trabeculae, the BSC and IBC decrease as the first viscosity and resistance coefficients increase. The results demonstrate that, in addition to bone mineral density (BMD) and microarchitecture, trabecular material properties significantly influence ultrasonic backseattering signals in cancellous bones. This research furthers the understanding of ultrasonic backscattering in cancellous bones and the characterization of cancellous bone status.  相似文献   

8.
Correlations between acoustic properties and bone density were investigated in the 12 defatted bovine cancellous bone specimens in vitro. Speed of sound (SOS) and broadband ultrasonic attenuation (BUA) were measured in three different frequency bandwidths from 0.5 to 2 MHz using three matched pairs of transducers with the center frequencies of 1, 2.25, and 3.5 MHz. The relative orientation between ultrasonic beam and bone specimen was the mediolateral (ML) direction of the bovine tibia. SOS shows significant linear positive correlation with apparent density for all three pairs of transducers. However, BUA shows relatively weak correlation with apparent density. SOS and BUA are only weakly correlated with each other. The linear combination of SOS and BUA in a multiple regression model leads to a significant improvement in predicting apparent density. The correlations among SOS, BUA, and bone density can be effectively and clearly represented in the three-dimensional space by the multiple regression model. These results suggest that the frequency range up to 1.5 MHz and the multiple regression model in the three-dimensional space can be useful in the osteoporosis diagnosis.  相似文献   

9.
用超声轴向传播技术评价长骨状况已成为近年来的一个研究热点。本文首先介绍了第一到达波(FAS)法、超声Lamb波及柱面导波法在评价长骨皮质骨状况方面的研究进展,最后分析和讨论了当前研究中存在的问题及应该研究的方向。  相似文献   

10.
Various models for ultrasonic scattering from trabecular bone have been proposed. They may be evaluated to a certain extent by comparison with experimental measurements. In order to appreciate limitations of these comparisons, it is important to understand measurement precision. In this article, an approach proposed by Lizzi and co-workers is adapted to model precision of estimates of frequency-dependent backscatter for scattering targets (such as trabecular bone) that contain many scatterers per resolution cell. This approach predicts uncertainties in backscatter due to the random nature of the interference of echoes from individual scatterers as they are summed at the receiver. The model is validated in experiments on a soft-tissue-mimicking phantom and on 24 human calcaneus samples interrogated in vitro. It is found that while random interference effects only partially explain measured variations in the magnitude of backscatter, they are virtually entirely responsible for observed variations in the frequency dependence (exponent of a power law fit) of backscatter.  相似文献   

11.
This paper describes preliminary observations of ultrasonic wave propagation in air-saturated defatted cancellous bone from the human vertebra. Using a broadband pulse transmission system, attenuation and phase velocity were measured over a wide frequency range (100 kHz-1 MHz). The observed behaviour was consistent with that expected for the decoupled slow wave predicted by Biot's theory. Velocity was lower than that of free air, and there was marked frequency-dependent attenuation and velocity dispersion. The tortuosity (alpha) of the trabecular microstructure was estimated from the high frequency limit of the dispersion curve, with a mean value of alpha = 1.040 +/- 0.004 obtained in five specimens. Ultrasonic measurements in air represent a valuable new approach, capable of yielding parameters that directly characterise bone structure. Furthermore, they may give useful insights into wave propagation in bone in vivo, where the trabecular framework is saturated with marrow fat rather than air.  相似文献   

12.
刘骁  沙正骁  梁菁 《应用声学》2023,42(3):529-539
材料超声回波衰减是评价材料均匀一致性的常用方法, 针对具有复杂结构的航空发动机盘件难以进行材料底面超声回波衰减评价的问题, 本文提出了利用超声背散射波信号直接预测底面回波衰减的方法。采用10MHz聚焦探头进行超声背散射波数据的采集, 利用深度学习技术构建和训练模型,建立了基于深度学习的材料底面回波衰减预测方法, 同时讨论了采用不同信号形式的超声波信号分类识别模型的准确率差异。研究发现:基于深度学习技术可实现通过超声背散射波预测材料的底面回波衰减, 预测结果和实际底面回波衰减试验结果具有良好的一致性。  相似文献   

13.
Boyi Li 《中国物理 B》2022,31(11):114303-114303
The ultrasonic backscatter (UB) has the advantage of non-invasively obtaining bone density and structure, expected to be an assessment tool for early diagnosis osteoporosis. All former UB measurements were based on exciting a short single-pulse and analyzing the ultrasonic signals backscattered in bone. This study aims to examine amplitude modulation (AM) ultrasonic excitation with UB measurements for predicting bone characteristics. The AM multiple lengths excitation and backscatter measurement (AM-UB) functions were integrated into a portable ultrasonic instrument for bone characterization. The apparent integrated backscatter coefficient in the AM excitation (AIBAM) was evaluated on the AM-UB instrumentation. The correlation coefficients of the AIBAM estimating volume fraction (BV/TV), structure model index (SMI), and bone mineral density (BMD) were then analyzed. Significant correlations (|R| = 0.82-0.93, p < 0.05) were observed between the AIBAM, BV/TV, SMI, and BMD. By growing the AM excitation length, the AIBAM values exhibit more stability both in 1.0-MHz and 3.5-MHz measurements. The recommendations in AM-UB measurement were that the avoided length (T1) should be lower than AM excitation length, and the analysis length (T2) should be enough long but not more than AM excitation length. The authors conducted an AM-UB measurement for cancellous bone characterization. Increasing the AM excitation length could substantially enhance AIBAM values stability with varying analyzed signals. The study suggests the portable AM-UB instrument with the integration of real-time analytics software that might provide a potential tool for osteoporosis early screening.  相似文献   

14.
Hosokawa A 《Ultrasonics》2006,44(Z1):e227-e231
The trabecular frame of cancellous bone has a high degree of porosity, anisotropy and inhomogeneity. The propagation of ultrasonic waves in cancellous bone is significantly affected by the trabecular structure. In this paper, two two-dimensional finite-difference time-domain (FDTD) methods, which were the popular viscoelastic FDTD method for a viscoelastic medium and Biot's FDTD method for a fluid-saturated porous medium, have been applied to numerically analyze the ultrasonic pulse waves propagating through bovine cancellous bone in the directions parallel and perpendicular to the trabecular alignment. The Biot's fast and slow longitudinal waves, which were identified in previous experiments for the propagation parallel to the trabecular orientation, could be analyzed using Biot's FDTD method rather than the viscoelastic FDTD method. For the single wave propagation in the perpendicular direction, on the other hand, the viscoelastic FDTD result was found to be in more good agreement with the experimental result.  相似文献   

15.
Edee MK 《Ultrasonics》2000,37(9):645-656
A procedure is demonstrated for characterization of biological tissues at small scattering angles. The power spectra of ultrasonic pulses transmitted through excised tissue samples were measured and compared to the spectra of signals transmitted through a water path. The specimens were examined in two spatial-frequency bands by acquiring data at scattering angles of 10 degrees and 20 degrees using 2.25 MHz transducers. Peaks in the measured power spectra are interpreted using two signal models. The medium is modelled either as a periodic structure producing a single spectral peak, or by two discrete targets producing a periodic modulation of the spectrum. The periodic structure model appears to be the more promising method for interpretation of forward-scattered signals. Data acquired from hyperplastic spleen and atheromatous aorta specimens both exhibited increases in pulse-tissue interaction at low spatial frequencies compared to normal specimens of those tissues. This observation is tentatively linked to increases in the size or separation of distributed scattering structures resulting from those pathologies.  相似文献   

16.
The paper describes the investigations intended to compare the results of experimental measurements of backscattering properties of the trabecular bone with the results of computer simulations. Ultrasonic RF echoes were collected using two bone scanners operating at 0.58 and 1.3 MHz. The simulations of the backscattered RF echoes were performed using the scattering model of the trabecular bone that consisted of cylindrical and spherical elements uniformly distributed in water-like medium. For each measured or simulated RF backscatter the statistical properties of the signal envelope were determined. Experimental results suggest deviations of the backscattering properties from the Rayleigh distribution. The results of simulation suggest that deviation from Rayleigh distribution depends on the variation of trabeculae diameters and the number of thin trabeculae. Experimentally determined deviations corresponded well to the deviations calculated from simulated echoes assuming trabeculae thickness variation equaled to the earlier published histomorphometric study results.  相似文献   

17.
The lamellar structure of osteoporotic human trabecular bone was characterized experimentally by means of transmission electron microscopy (TEM). More specifically, the TEM was used to determine if trabecular bone exhibits similar lamellar structural motifs as cortical bone by analyzing unmineralized, mineralized and demineralized bone, and to study the influence of the osteocyte network on the lamellar structure of osteoporotic trabecular bone. Comparison with normal trabecular bone is included. This paper summarizes partial results of a larger study, which addressed the characterization of the hierarchical structure of normal versus osteoporotic human trabecular bone [Rubin, M.A., 2001. Multiscale characterization of the ultrastructure of trabecular bone in osteoporotic and normal humans and in two inbred strains of mice. MS Thesis, Georgia Institute of Technology.] at several structural scales.  相似文献   

18.
The two-wave phenomenon, the wave separation of a single ultrasonic pulse in cancellous bone, is expected to be a useful tool for the diagnosis of osteoporosis. However, because actual bone has a complicated structure, precise studies on the effect of transition conditions between cortical and cancellous parts are required. This study investigated how the transition condition influenced the two-wave generation using three-dimensional X-ray CT images of an equine radius and a three-dimensional simulation technique. As a result, any changes in the boundary between cortical part and trabecular part, which gives the actual complex structure of bone, did not eliminate the generation of either the primary wave or the secondary wave at least in the condition of clear trabecular alignment. The results led us to the possibility of using the two-wave phenomenon in a diagnostic system for osteoporosis in cases of a complex boundary.  相似文献   

19.
In this study, the effect of cortical thickness variation on the propagation of leaky Lamb waves is investigated by using an axial transmission technique commonly used to characterize long bones. Three Lucite plates with thicknesses of 1, 3, and 5 mm as bone phantoms and one bovine tibia with a cortical thickness of 2 mm were used at various low frequencies. Experimental measurements in bone phantoms show that the peak frequency and amplitude of excited Lamb modes strongly depend on the thickness of the Lucite plate. In the bovine tibia, the S0 and A0 Lamb modes are consistently observed in the frequency-thickness region from 0.2 to 1.0 MHz mm, and can be effectively launched at a frequency of 200 kHz, suggesting 200 kHz to be the optimal signal frequency for in vivo clinical applications. It can be also seen that both modes are affected by the frequency-thickness product, but the effect is greater for the A0 mode. Hence, the A0 Lamb mode seems more sensitive to cortical thickness change due to aging and osteoporosis. This study suggests that the use of leaky Lamb waves is feasible for ultrasonic bone assessment.  相似文献   

20.
In testing cancellous bone using ultrasound, two types of longitudinal Biot’s waves are observed in the received signal. These are known as fast and slow waves and their appearance depend on the alignment of bone trabeculae in the propagation path and the thickness of the specimen under test (SUT). They can be used as an effective tool for the diagnosis of osteoporosis because wave propagation behavior depends on the bone structure. However, the identification of these waves in the received signal can be difficult to achieve.In this study, ultrasonic wave propagation in a 4 mm thick bovine cancellous bone in the direction parallel to the trabecular alignment is considered. The observed Biot’s fast and slow longitudinal waves are superimposed; which makes it difficult to extract any information from the received signal. These two waves can be separated using the space alternating generalized expectation maximization (SAGE) algorithm. The latter has been used mainly in speech processing.In this new approach, parameters such as, arrival time, center frequency, bandwidth, amplitude, phase and velocity of each wave are estimated. The B-Scan images and its associated A-scans obtained through simulations using Biot’s finite-difference time-domain (FDTD) method are validated experimentally using a thin bone sample obtained from the femoral-head of a 30 months old bovine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号