首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-field local projection stabilized (LPS) finite element method is developed for computations of a three-dimensional axisymmetric buoyancy driven liquid drop rising in a liquid column where one of the liquid is viscoelastic. The two-phase flow is described by the time-dependent incompressible Navier-Stokes equations, whereas the viscoelasticity is modeled by the Giesekus constitutive equation in a time-dependent domain. The arbitrary Lagrangian-Eulerian (ALE) formulation with finite elements is used to solve the governing equations in the time-dependent domain. Interface-resolved moving meshes in ALE allows to incorporate the interfacial tension force and jumps in the material parameters accurately. A one-level LPS based on an enriched approximation space and a discontinuous projection space is used to stabilize the numerical scheme. A comprehensive numerical investigation is performed for a Newtonian drop rising in a viscoelastic fluid column and a viscoelastic drop rising in a Newtonian fluid column. The influence of the viscosity ratio, Newtonian solvent ratio, Giesekus mobility factor, and the Eötvös number on the drop dynamics are analyzed. The numerical study shows that beyond a critical Capillary number, a Newtonian drop rising in a viscoelastic fluid column experiences an extended trailing edge with a cusp-like shape and also exhibits a negative wake phenomena. However, a viscoelastic drop rising in a Newtonian fluid column develops an indentation around the rear stagnation point with a dimpled shape.  相似文献   

2.
The article discusses the thermocapillary drift of a drop of a viscous liquid, filling the whole space, in another liquid, with a constant temperature gradient at infinity, in the absence of the force of gravity. The distribution of the velocities, temperatures, and pressures in the liquid are obtained in the Ozeenov approximation, and the rate of drift of a drop and its form are found.  相似文献   

3.
The effect of a surface chemical reaction involving a weak soluble surface active substance on the motion of a drop in a liquid is investigated. It is shown that as a result of the Marangoni effect the non-uniformity in the distribution of the substance along the surface associated with the proper motion of the drop and the chemical reaction has an important influence on the nature of the motion of the drop and on the force exerted by the surrounding Liquid. Under certain conditions this Leads to the development of a thrust proportional to the velocity of the drop (chemoconcentration capillary effect). The condition of occurrence of the thrust is obtained, together with its dependence on various physical parameters.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 147–154, January–February, 1988.  相似文献   

4.
The Characterization of the effects of surface wettability and geometry on pressure drop of slug flow in isothermal horizontal microchannels is investigated for circular and square channels with hydraulic diameter (D h ) of 700 μm. Flow visualization is employed to characterize the bubble in slug flow established in microchannels of various surface wettabilities. Pressure drop increases with decrease in surface wettability, while the channel geometry influences slug frequency. It is observed that the gas–liquid contact line in advancing and receding interfaces of bubble change with surface wettability in slug flows. Flow resistance, where capillary force is important, is estimated using Laplace–Young equation considering the change of dynamic contact angles of bubble. The experimental study also demonstrates that the liquid film presence elucidates the pressure drop variation of slug flows at various surface wettabilities due to diminishing capillary effect.  相似文献   

5.
The problem of the fully established slow translational motion of a round drop (bubble) in a viscous liquid was solved by Adamar and Rybchinskii [1, 2]. The results of experimental measurements are rarely in agreement with the Adamar-Rybchinskii formula. This is connected with braking of the flow due to surface-active impurities, which are usually rather numerous in liquids. Nevertheless, we shall consider the problem of the not fully established motion of a drop in the simplest case, assuming that there are no surface-active substances. The article discusses problems of the vibrations and motions of a spherical drop in a viscous liquid, with arbitrary accelerations. An analysis is made of a formula for the force of resistance of a drop of liquid with a high viscosity, an elastoviscous drop, and a particle with slipping-through.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 32–37, November–December, 1975.  相似文献   

6.
A method for the application of interface force in the computational modeling of free surfaces and interfaces which uses PLIC-VOF methods is developed. This method is based on evaluation of the surface tension force only in the interfacial cells with out using the neighboring cells. The normal and the interface surface area needed for the calculation of the surface tension force are calculated more accurately. This method is applied on a staggered grid and it is referred to as Staggered Grid Interfere Pressure calculation method or SGIP. The present method is applied to a two-dimensional motionless liquid drop and a gas bubble. In addition, oscillations of a non-circular two-dimensional drop and a bubble due only to the surface tension forces are considered. It is shown that the new method predicts the pressure jump at the interface more accurately and produces less spurious currents compared to CSF, CSS and Meier's methods when applied to the same cases.  相似文献   

7.
The axisymmetric spreading of a thin liquid drop under the influence of gravity and rotation is investigated. The effects of the Coriolis force and surface tension are ignored. The Lie group method is used to analyse the non-linear diffusion-convection equation modelling the spreading of the liquid drop under gravity and rotation. A stationary group invariant solution is obtained. The case when rotation is small is considered next. A straightforward perturbation approach is used to determine the effects of the small rotation on the solution given for spreading under gravity only. Over a short period of time no real difference is observed between the approximate solution and the solution for spreading under gravity only. After a long period of time, the approximate solution tends toward a dewetting solution. We find that the approximate solution is valid only in the interval t∈[0,t∗), where t∗ is the time when dewetting takes place. An approximation to t∗ is obtained.  相似文献   

8.
We implement a volume-of-fluid algorithm with a parabolic re-construction of the interface for the calculation of the surface tension force (VOF-PROST). This achieves higher accuracy for drop deformation simulations in comparison with existing VOF methods based on a piecewise linear interface re-construction. The algorithm is formulated for the Giesekus constitutive law. The evolution of a drop suspended in a second liquid and undergoing simple shear is simulated. Numerical results are first checked against two cases in the literature: the small deformation theory for second-order liquids, and an Oldroyd-B extensional flow simulation. We then address the experimental data of Guido et al. (2003) for a Newtonian drop in a viscoelastic matrix liquid. The data deviate from existing theories as the capillary number increases, and reasons for this are explored here with the Oldroyd-B and Giesekus models.  相似文献   

9.
The effect of an externally imposed axial temperature gradient on the mobility and deformation of a drop in an otherwise stagnant liquid within an insulated cylindrical tube is investigated. In the absence of bulk transport of momentum and energy, the boundary integral technique is used to obtain the flow and temperature fields inside and outside the deformable drop. The steady drop shapes and the corresponding migration velocities are examined over a wide range of the dimensionless parameters. The steady drop shape is nearly spherical for dimensionless drop sizes <0.5, but becomes slightly elongated in the axial direction for drop sizes comparable to tube diameter. The adverse effect of drop deformation on the effective temperature gradient driving the motion is slightly more pronounced than its favorable effect of reducing drag, thereby leading to a slight reduction in drop mobility with increasing drop deformation. Increasing the viscosity ratio reduces drop deformation and leads to a slight enhancement in the relative mobility (with respect to free thermocapillary motion) of confined drops. When the drop fluid has a lower thermal conductivity than the exterior phase, the presence of the thermally-insulating wall increases the thermal driving force for drop motion (compared to that for the same drop in unbounded domain) by causing more pronounced bending of the isotherms toward the drop. However, the favorable thermal effect of the confining wall is overwhelmed by its retarding hydrodynamic effect, causing the confined drop to always move slower than its unbounded counterpart regardless of the value of the thermal conductivity ratio.  相似文献   

10.
Recent two-dimensional numerical simulations and experiments have shown that, when a drop undergoes shear in a viscoelastic matrix liquid, the deformation can undergo an overshoot. I implement a volume-of-fluid algorithm with a paraboloid reconstruction of the interface for the calculation of the surface tension force for three-dimensional direct numerical simulations for a Newtonian drop in an Oldroyd-B liquid near criticalities. Weissenberg numbers up to 1 at viscosity ratio 1 and retardation parameter 0.5 are examined. Critical capillary numbers rise with the Weissenberg number. Just below criticality, drop deformation begins to undergo an overshoot when the Weissenberg number is sufficiently high. The overshoot becomes more pronounced, and at higher matrix Weissenberg numbers, such as 0.8, drop deformation undergoes novel oscillations before settling to a stationary shape. Breakup simulations are also described.  相似文献   

11.
An approach is described for investigation of the interaction between a rigid body and a viscous fluid boundary under acoustic wave propagation. The influence of the liquid on the rigid body is determined as a mean force, which is a constant in the time component of the hydrodynamic force. This enables the use of a previously developed technique for calculation of pressure in a compressible viscous liquid. The technique takes into account the second-order terms with respect to the wave field parameters and is based on investigation of a system of initially nonlinear hydromechanics equations that can be simplified with respect to the wave motion parameters of the liquid. It has proven possible to retain the second-order terms for determination of stresses in the liquid without having to solve the system of nonlinear equations. The stresses can be expressed in terms of parameters found in the solution of the linearized equations of the compressible viscous liquid. In this way, the solution of linearized equations is expressed in terms of a scalar and vector potentials. The problem statement is derived for a rigid cylinder located near a rigid flat wall under the effects of a wave propagating perpendicular to the wall. The solution for this particular example is obtained.  相似文献   

12.
The process of single liquid drop impact on thin liquid surface is numerically simulated with moving particle semi‐implicit method. The mathematical model involves gravity, viscosity and surface tension. The model is validated by the simulation of the experimental cases. It is found that the dynamic processes after impact are sensitive to the liquid pool depth and the initial drop velocity. In the cases that the initial drop velocity is low, the drop will be merged with the liquid pool and no big splash is seen. If the initial drop velocity is high enough, the dynamic process depends on the liquid depth. If the liquid film is very thin, a bowl‐shaped thin crown is formed immediately after the impact. The total crown subsequently expands outward and breaks into many tiny droplets. When the thickness of the liquid film increases, the direction of the liquid crown becomes normal to the surface and the crown propagates outward. It is also found that the radius of the crown is described by a square function of time: rC = [c(t ? t0)]0.5. When the liquid film is thick enough, a crown and a deep cavity inside it are formed shortly after the impact. The bottom of the cavity is initially oblate and then the base grows downward to form a sharp corner and subsequently the corner moves downward. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The axisymmetric spreading under gravity of a thin liquid drop on a horizontal plane with suction or blowing of fluid at the base is considered. The thickness of the liquid drop satisfies a non-linear diffusion equation with a source term. For a group invariant solution to exist the normal component of the fluid velocity at the base, vn, must satisfy a first-order quasi-linear partial differential equation. The general form of the group invariant solution for the thickness of the liquid drop and for vn is derived. Two particular solutions are considered. Each solution depends essentially on only one parameter which can be varied to yield a range of models. In the first solution, vn is proportional to the thickness of the liquid drop. The base radius always increases even for suction. In the second solution, vn is proportional to the gradient of the thickness of the liquid drop. The thickness of the liquid drop always decreases even for blowing. A special case is the solution with no spreading or contraction at the base which may have application in ink-jet printing.  相似文献   

14.
分子间势能作用是研究分子界面行为的一个重点所在. 采用平衡态分子动力学 模拟(equilibrium molecular dynamics simulation, EMDS)方法,对由水分子 构成的汽液界面系统进行了模拟和研究. 分析统计结 果符合势能分布在液相区和气相区内存在明显落差的已知结论,并发现不同种力对分子穿越 两相区时所起的作用不同,Lennard-Jones(简写L-J)力阻碍分子凝结,而静电力则推动分子凝结并且在合力中起 主要作用. 同时,着重对发生相变行为的典型分子进行了追踪和分析,从能量的角度显 示了凝结(蒸发)相变过程对应着一个气态(液态)分子由高(低)势能位落入势阱(翻越 势垒)的能量降落(抬升)过程.  相似文献   

15.
We derive a supplemental evolution equation for an interface between the nematic and isotropic phases of a liquid crystal when flow is neglected. Our approach is based on the notion of configurational force. As an application, we study the behavior of a spherical isotropic drop surrounded by a radially oriented nematic phase: our supplemental evolution equation then reduces to a simple ordinary differential equation admitting a closed-form solution. In addition to describing many features of isotropic-to-nematic phase transitions, this simplified model yields insight concerning the occurrence and stability of isotropic cores for hedgehog defects in liquid crystals.  相似文献   

16.
Numerical examples of application of the density functional used to describe isothermal flows of two-phase two-species mixtures are given. The following flows are calculated in a two-dimensional formulation: impact of a drop on a liquid layer, breakdown of a drop in the velocity field of the Couette flow, formation of the wetting angle of a drop on a solid surface, and development of the Rayleigh–Taylor and Kelvin–Helmholtz instabilities at the gas–liquid interface.  相似文献   

17.
Foam lift is one of the most cost effective methodologies for unloading gas wells. The surfactants are either injected intermittently or continuously to lift the liquid to the surface. By reducing the gravitational gradient and increasing the frictional gradient, the critical velocity at which liquid loading occurs is shifted to lower gas velocities. Currently, we do not have a methodology to predict the critical velocity (at the transition boundary of annular and intermittent flow) and the pressure drop under foam flow conditions.To address this, we measured several foam flow characteristics in both small scale and large scale facilities. Small scale facility involved measurement of foam carryover capacity as a function of time and surfactant concentration. Large scale facility involved measurement of liquid holdup, pressure drop, fraction of gas trapped in foam and foam holdup in 40-ft 2-in. and 4-in. tubing.We developed closure relationships for liquid hold up, foam holdup, fraction of gas trapped in the foam and interfacial friction factor by combining the small scale data with the data collected in the large scale experiments. These closure relationships are applicable to four different surfactants tested. A new transition criterion was developed and successfully used to predict onset of liquid loading under foam flow. Using a force balance over the gas core in annular flow, we developed a new procedure to calculate the pressure drop under foam flow conditions. We compared our model results with actual measurements in the large scale facility. Our model was reasonably able to predict the pressure drop within ±30%. The reason for such a large variance is that the small scale facility was not able to capture all the characteristics of the foam which were observed in the large scale facility. It is very difficult to reproduce the foam characteristics exactly in two different experiments. This is discussed further in this paper.The procedure developed is the only one currently available to calculate the pressure drop under the foam flow conditions using the small scale data. It is superior to conventional annular flow pressure drop prediction models which are currently available in the literature.  相似文献   

18.
The equilibrium cross sectional shape and stability of a liquid drop moving in a gaseous medium is studied analytically. Such liquid drops appear as the final product in numerous industrial spraying and atomisation processes. Raindrops falling at their terminal speed can also be described by the present model. The equilibrium shape is formed by the interaction of two main factors; the dynamic pressure distribution in the gaseous medium which tends to deform the liquid drop into an oblate shape and the surface tension which tends to restore the spherical shape. The meridional shape of the liquid drop is obtained as a power series in the Weber number. The linear stability of the deformed shapes described above to small surface disturbances is studied. The stability analysis shows the effect of the surrounding gas flow on the natural frequencies of oscillation (vibration) of the liquid drop. The liquid drop is found to be stable in the region of low Weber numbers studied with a decrease in oscillation frequency proportional to the Weber number. This is in agreement with existing experimental data. Extrapolation of the results here lead to a Weber number of W=5.33 for breakup, again in agreement with experimental correlations.  相似文献   

19.
The formation of κ-carrageenan droplets in channel emulsification was experimentally investigated. The dispersed phase was vertically injected into co-flowing immiscible palm oil in the direction of gravity. This study focused on predicting κ-carrageenan drop size using force balance analysis. The force balance model considers the interfacial tension to be the solitary attaching force, while a combination of the drag force from the co-flowing palm oil and the body force of the extruding κ-carrageenan liquid act as the detaching forces. The conventional model gave poor predictions for droplet size, with an average relative deviation of 23%. This large deviation could be attributed to necking phenomena and an underestimation of the drag force generated on the shear-thinning κ-carrageenan solution. By incorporating correction factors, the average relative deviation of the force balance model dropped to 4%.  相似文献   

20.
Condensation in hydrophilic microchannel is strongly influenced by the channel cross-sectional geometry and the condensing surfaces hydrophobicity, which govern the evolution of the liquid film. This work makes progress on studying the relationship between channel geometry and condensation through flow regime visualizations, film-thickness measurements with optical interferometery, and temperature profile measurements with heat flux distribution construction. The hydrophilic microchannels have aspect ratios ranging from 1 to 5 and hydraulic diameters from 100 μm through 300 μm. The experimental measurement qualitatively matches the prediction of previous theoretical models accounting for the surface tension effect, which highlights the importance of surface tension force and channel geometry in the microchannel condensation. Pressure drop and mean heat flux measurements show that a larger channel is favorable for minimizing the pressure drop, while a smaller channel size and higher aspect ratio are desirable for maximizing the mean heat flux. The optimization of the channel geometry for a given application lies in the trade-off between these two factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号