首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

When bulk acoustic waves are applied to an optical waveguide, several modulation effects are observed, depending on the type of wave (longitudinal or shear). Longitudinal sound waves frequency-shift the guided light, thus providing a means of modulating light in a wide variety of waveguide materials. Using thin-film mosaic acoustic transducer technology, we have demonstrated such modulation at frequencies in the gigahertz region. By segmenting the acoustic transducer electrodes, the same arrangement can be used for deflecting the light since, with this arrangement, the acoustic field sets up a time-varying grating whose spatial frequency is set by the segment spacing. Theoretical frequency limitations on these devices do not appear to be important until approximately 30 GHz is reached. Thus, they are potentially useful for extremely wide-band data links. Experiments at 1.5 GHz show 30% bandwidth of acoustic modulation using optical heterodyne detection.  相似文献   

2.
Results of the studies of acoustooptical interaction in a lithium niobate crystal upon excitation of an elastic wave in the direction of the X-axis by a multielement piezoelectric transducer at frequencies about 10 GHz are presented. The experimental method is described. Frequency dependences of the diffracted light intensity and acoustic damping as well as the frequency resolving power are studied. Damping of longitudinal acoustic waves in X-cut lithium niobate is measured to be 1.05±0.02 dB/cm GHz. The maximum diffraction efficiency reached 1% for 1 W of electromagnetic power supplied. The frequency bandwidths at the levels of 3 and 6 dB of the maximum value are 2.5 and 3 GHz, respectively. The frequency resolution is 15 MHz at the frequency of 9 GHz.  相似文献   

3.
In a modification of a picosecond ultrasonic technique, a short acoustic pulse is launched into a liquid sample by a laser pulse absorbed in a semitransparent transducer film and is detected via coherent Brillouin scattering of a time-delayed probe pulse. With both excitation and probing performed from the transducer side, the arrangement is suitable for in vivo study of biological tissues. The signal is collected from a micrometer-thick layer next to the transducer and is not affected by the diffuse scattering of probe light deeper in the sample. The setup, utilizing a 33 nm thick single crystal SrRuO(3) transducer film, is tested on a full fat milk sample, with 11 GHz acoustic frequency recorded.  相似文献   

4.
In this paper a multiple strained layer structure with multiple quantum wells as a piezoelectric transducer is proposed for generating and detecting nano ultrasound waves with nanometer wavelength and tera hertz frequency. By inducing femtosecond optical pulses at this strained structure, internal piezoelectric field is changed. As a result longitudinal acoustic phonon oscillations can be treated as nano acoustic waves. It could be noticed in simulated cases that detection of nano ultrasound waves can be used in non destructive testing and high accuracy measurements with this structure. It is also shown that the MQW structure design how influences in generated nano acoustic waves.  相似文献   

5.
郭丽君  宁亮  孔梅  陈拓源 《中国光学》2014,7(4):651-656
基于激光器频率谱检测技术,沿着光的传输方向分析了光波在谐振式集成光学陀螺系统中的传播,结合输入信号特征,建立频域内的数学模型,通过数值仿真和实验得到了调频检测系统下的解调曲线。按照光的传输方向:激光器、声光晶体移频器、光波导环形谐振器、探测器,利用贝塞尔函数展开和光场耦合模理论分析了谐振式集成光学陀螺解调特性,及其调频调制检测系统解调输出信号与谐振频率偏差之间的关系。通过数值计算,分析了解调曲线的变化规律,得到了施加在激光器压电陶瓷驱动器上调制波形的最佳调制系数。在实验上搭建了激光器频率调制解调技术系统,得到了解调曲线。数值仿真和实验结果表明,当调制系数M=2时,线性工作区间斜率最大,解调曲线最好。实测形状与理论分析结果相符,从解调信号得到±2×103 rad/s的陀螺动态范围。  相似文献   

6.
提出了一种基于平面光波导谐振腔的可调谐光电振荡器.该振荡器中,相位调制器串联光波导谐振腔,取代了传统系统中的强度调制器、长光纤和滤波器.由于光学谐振腔对光子频率和相位敏感,调节激光器改变输出光的波长,不仅可以调制光的强度,还可以对微波光子进行选频输出.当光子在波导腔中发生谐振时,产生很强的延时特性,可以取代传统系统中的长光纤.整个光电振荡器系统体积为长29.5cm、宽21cm、高7cm.实验中,改变0.1pm的光子波长,能够产生步长为12.535.5 MHz的调谐,调谐范围达2 GHz,且系统能够产生10 GHz的微波信号,在中心频率为10 GHz处其相位噪声为-109.7dBc/Hz@10kHz.该研究为光电振荡器的小型化和实用化提供了一种新的思路.  相似文献   

7.
Compact laser sources operating in mid infrared spectral region with stable emission are important for applications in spectroscopy and wireless communication. Quantum cascade lasers (QCL) are unique semiconductor sources covering mid infrared frequency range. Based on intersubband transitions, the carrier lifetime of these sources is in the ps range. For this reason their frequency response to direct modulation is expected to overcome the limits of standard semiconductor lasers. In this work injection locking of the roundtrip frequency of a QCL emitting at 9 μm is reported. Inter modes laser frequency separation is stabilized and controlled by an external microwave source. Designing an optical waveguide embedded in a microstrip line a flat frequency response to direct modulation up to 14 GHz is presented. Injection locking over MHz frequency range at 13.7 GHz is demonstrated. Numerical solutions of injection locking theory are discussed and presented as tool to describe experimental results.  相似文献   

8.
Semiconductor microcircular lasers have been investigated as potential light sources for photonic integrated circuits and optical interconnections for more than two decades. However, the direct modulation bandwidths of the circular microlasers remain a challenge, especially when being compared with other microlasers, such as photonic crystal lasers. In this paper, microcircular lasers connected to an output waveguide are investigated for high‐speed direct modulation with optimized mode Q factors. Small signal modulation with a resonance frequency of fR = 12.5 GHz is realized for a AlGaInAs/InP circular microlaser with a radius of 10 µm at 290 K. Furthermore, clear eye diagrams are observed at 12.5 Gbit/s for a 15‐µm radius circular microlaser with fR = 6.9 GHz.  相似文献   

9.
A Stark effect for excitons parametrically driven by coherent acoustic phonons is proposed. Our scheme refers to a low-temperature intrinsic semiconductor or semiconductor nanostructure pumped by an acoustic wave (frequency band nu(ac) approximately equal to 1-40 GHz and intensity range I(ac) approximately equal to 10(-2)-10(2) W/cm(2)) and probed by low-intensity light. Tunable optical band gaps, which strongly change the spectral shape of the exciton line, are induced in the polariton spectrum by acoustic pumping. We develop an exactly solvable model of the acoustic Stark effect and apply our results to GaAs driven by bulk or surface acoustic waves.  相似文献   

10.
Longhi S 《Optics letters》2011,36(6):819-821
A discrete analogue of the dynamic (Kapitza) trapping effect, known for classical and quantum particles in rapidly oscillating potentials, is proposed for light waves in modulated graded-index waveguide lattices. In particular, it is shown that, while a graded-index potential in a nonmodulated waveguide lattice can confine light at either normal or Bragg angle incidence, periodic modulation of the potential in the longitudinal direction enables one to trap optical beams at both normal and Bragg incidence angles.  相似文献   

11.
The rediationless absorption of light propagating in optical fibres induces both stress waves and thermal waves in the fibre medium. Detection of such waves is termed the optoacoustic effect. Successful detection in optical fibres is easily obscured by scattered light impinging on the detector. We have obtained a signal of 2 mV on a piezoceramic transducer attached to a commercial step-index optical fibre after passage of a 1 J ruby laser light pulse along the fibre axis. No signal was, however, produced when the transducer was not in contact with the fibre. Similar results were obtained using chopped cw laser radiation but then more care had to be taken since the transducers used had a measureable sensitivity to the low frequency chopped radiation emitted perpendicular to the optical fibre axis.  相似文献   

12.
Kotov  V. M. 《Acoustical Physics》2019,65(4):369-373
Acoustical Physics - Abstract—For broadband modulation of the intensity of optical radiation, the tandem arrangement two acousto-optic (AO) Bragg cells are proposed in which acoustic waves...  相似文献   

13.
利用螺旋波导对频率调制脉冲进行压缩可大幅度提高脉冲峰值功率。利用所编Matlab程序对螺旋波导的色散特性进行了计算和分析,获得了波纹幅度和纵向周期长度等结构参数对其色散特性的影响规律;给出了脉冲功率压缩比的计算公式,对不同脉宽和频带宽度、不同频率调制形式的微波脉冲通过螺旋波导后的功率压缩比进行了计算和分析。计算表明:脉冲的频率调制形式对功率压缩比影响较大;相同频率调制形式下,脉冲长度越长,工作频带越宽,功率压缩比越高。为了获得尽可能高的功率压缩比,需对脉冲的频率变化方式进行调节,使其与螺旋波导色散特性匹配。同时还需要在高的功率压缩比和高的压缩效率之间做出权衡。计算得到,当注入脉冲的脉宽为40ns、工作频带为8.8~9.5GHz、频率调制形式与螺旋波导色散特性匹配时,功率压缩比达到了15,压缩效率约为40%。  相似文献   

14.
A frequency selective acoustic transducer (FSAT) is proposed for directional sensing of guided waves. The considered FSAT design is characterized by a spiral configuration in wavenumber domain, which leads to a spatial arrangement of the sensing material producing output signals whose dominant frequency component is uniquely associated with the direction of incoming waves. The resulting spiral FSAT can be employed both for directional sensing and generation of guided waves, without relying on phasing and control of a large number of channels. The analytical expression of the shape of the spiral FSAT is obtained through the theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. Testing is performed by forming a discrete array through the points of the measurement grid of a scanning laser Doppler vibrometer. The discrete array approximates the continuous spiral FSAT geometry, and provides the flexibility to test several configurations. The experimental results demonstrate the strong frequency dependent directionality of the spiral FSAT and suggest its application for frequency selective acoustic sensors, to be employed for the localization of broadband acoustic events, or for the directional generation of Lamb waves for active interrogation of structural health.  相似文献   

15.
We present exact analytical solutions to parity-time(P T) symmetric optical system describing light transport in P T-symmetric optical couplers. We show that light intensity oscillates periodically between two waveguides for unbroken P T-symmetric phase, whereas light always leaves the system from the waveguide experiencing gain when light is initially input at either waveguide experiencing gain or waveguide experiencing loss for broken P T-symmetric phase. These analytical results agree with the recent experimental observation reported by Ru¨ter et al. [Nat. Phys.6(2010) 192]. Besides, we present a scheme for manipulating P T symmetry by applying a periodic modulation. Our results provide an efficient way to control light propagation in periodically modulated P T-symmetric system by tuning the modulation amplitude and frequency.  相似文献   

16.
A coplanar slow-wave electrode with periodic cross-tie overlays has been used to satisfy the essential phase velocity matching between the modulation and optical waves for wideband travelling-wave optical modulators. For an optimized modulator of 4 mm length at 1.3 m light wavelength, the calculated halfwave modulation voltage (23 V) is slightly higher than that (20 V) of conventional coplanar modulators but the 3 dB bandwidth (100 GHz) is much wider than the bandwidth limit (30 GHz) of walkoff-limited conventional coplanar modulators. The measured effective index (4.61) of the modulation wave is much higher than that (2.65) of conventional coplanar electrodes and agrees very well with the calculated one (4.25).  相似文献   

17.
The mutual resistance of transducer arrays is investigated in order to design arrays with improved performance for high intensity sounds at a given frequency. This work proposes the theory that the mutual resistance is related to the loading effects of pressure waves propagated from a piston driver on the surface of another driver. Using this interpretation, the important characteristics of the mutual resistance of two piston drivers are explained and the conditions for local maxima in the mutual resistance are easily determined. On the basis of analyses of the interactions between a driver and acoustic pressure waves, we propose a method to determine the driver radius and the distance between two drivers that give maximum mutual radiation resistance. To evaluate the proposed method, the total resistance of a transducer array is calculated using the formulas for mutual and self-resistance established by Pritchard. The results of the calculations of the total resistances of arrays with many drivers show that a transducer array with drivers arranged sparsely can achieve a larger value of the radiation power per unit area as well as better radiation efficiency than an array in which the drivers are in a closely packed arrangement at a given frequency.  相似文献   

18.
The scanning of two-dimensional black and white movies is described by using the interaction of light with surface acoustic waves. The modulation transfer function for the image scanner is derived. Further, it is shown that the spatial resolution is limited by the surface acoustic wave transducer bandwidth rather than the physical size of the exit pupil of the scanner.  相似文献   

19.
Optical imaging in the near-infrared (NIR) region provides the possibility to detect and determine pathological changes in human tissue without the drawback of ionizing radiation and with little technical and financial effort. Especially in rheumatoid arthritis, imaging by optical tomography to detect early inflammations in joints has the potential to become a supportive tool to common imaging modalities. One way to enhance the resolution and specificity of optical tissue characterization is to use the frequency domain instead of DC intensity measurement. Intensity modulation of a light source leads to propagation of diffuse photon-density waves (PDW) through the tissue. In this study, we report basic experimental results on tissuelike phantoms to determine the optimal parameters for PDW-transillumination of finger joints. We used PDW with modulation frequencies from 100 MHz up to 1 GHz to scan across a tissuelike phantom containing an absorbing plane bounded by an edge. The geometrical extents of the phantoms are similar to human finger joints. We measure the transmitted PDW and show that amplitude and phase behaves at the edge as expected according to theoretical predictions. An increasing modulation frequency leads to increasing slope of the amplitude decay at the edge but decreasing signal-to-noise ratio. Even at 1 GHz, the edge is detectable.  相似文献   

20.
Coupled electro-elastic SH waves propagating in a periodic piezoelectric finite-width waveguide are considered in the framework of the full system of Maxwell’s electrodynamic equations. We investigate Bloch–Floquet waves under homogeneous or alternating boundary conditions for the elastic and electromagnetic fields along the guide walls. Zero frequency stop bands, trapped modes as well as some anomalous features due to piezoelectricity are identified. For mixed boundary conditions, by modulating the ratio of the length of the unit cell to the width of the waveguide, the minimum widths of the stop bands can be moved to the middle of the Brillouin zone. The dispersion equation has been investigated also for phonon–polariton band gaps. It is shown that for waveguides at acoustic frequencies, acousto-optic coupling gives rise to polariton behavior at wavelengths much larger than the length of the unit cell but at optical frequencies polariton resonance occurs at wavelengths comparable with the period of the waveguide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号