首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The angle of view between inspected object and thermal imager influences the values of temperature measured by infrared thermography. This happens because the emissivity depends on the angle of radiation, and because the apparent temperature measured is influenced by that angle of view combined to thermal imager’s field of view. Therefore, it is necessary to know the angle of view during thermographic inspection, which is generally not feasible due to safety reasons. This paper develops a method of measuring the angle of view with no contact with the inspected object, by employing laser distance meters, commonly available in the market.  相似文献   

2.
In this article, quantitative evaluation of optical thermographic techniques relative to the non-destructive inspection of aluminum foam material is studied. For this purpose, a set of aluminum foam specimens with flat-bottom holes (FBH) was inspected by both optical lock-in thermography (LT) and pulsed thermography (PT). Probability of detection (PoD) analysis, as a quantitative method to estimate the capability and reliability of a particular inspection technique, was studied and compared for both optical LT and PT inspection results.  相似文献   

3.
Infrared thermography is a rapid, non-invasive and full-field technique for non-destructive testing and evaluation (NDT&E). With all the achievements on IR instrumentation and image processing techniques attained, it has been extended far beyond simple hot-spot detection and becomes one of the most promising NDT&E techniques in the last decades. It has achieved increasing acceptance in different sectors include medical imaging, manufacturing component fault detection and buildings diagnostic. However, one limitation of IR thermography is that the testing results are greatly affected by object surface emissivity. Surface with various emissivities may lead to difficult discrimination between area of defect and area with different emissivity. Therefore, many studies have been carried out on eliminating emissivity, for example, the time derivative approach, lock-in processing and differential contrast measurements. In these methods, sequence of themo-data/images are recorded and being processed in order to eliminate differences of emissivity. Another problem of IR thermography is that any obstruction may limit stimulations and imaging which leads to the observation of unclear defect image. To solve this problem, this paper proposes an algorithm based on the principle of computerized tomography which permits the reconstruction of unavailable/partially available temperature distribution of the affected area using the measured surrounding temperature field. In the process, a set of imaginary rays are projected from many different directions across the area. For each ray, integration of the temperature derivatives along the ray is equals to the temperature difference between the boundary points intercepted by the ray. Therefore, a set of linear equations can be established by considering the multiple rays. Each equation expresses the unknown temperature derivatives in the affected area in terms of the measured boundary temperature data. Solution of the set of simultaneous equations yields unknown thermal distribution in the area which needs to be reconstructed. Based on the proposed computerized tomography reconstruction (CTR) technique, deviated temperature data due to missing temperature data hidden by obstacle can be reconstructed. With further development, this technique may have the potential to be applied in the reconstruction of any smooth physical fields like phase information in optical techniques.  相似文献   

4.
Thermography, the art of visualizing and interpreting thermal patterns, is a versatile new tool for science, medicine and technology. It is developing rapidly and spreading into widely diverse fields. Although its origins are more than 130 years old, the first practical applications (in military reconnaissance) were achieved only 15 years ago. Today, clinical thermography offers new hope in the fight against cancer, and has many other uses; it is a completely passive diagnostic method and absolutely safe. In industry, thermography has potential value whenever there are problems in measuring temperature over extended areas, where point contact methods are insufficient, tedious, or impossible (e.g. in inaccessible places). Thermographic microscopes and telescopes offer great possibilities which are only just beginning to be explored. The design of thermographic equipment presents problems which do not arise in most electro-optical systems, including television, and which more nearly resemble the design problems of radio telescopes. This article reviews the basic principles and the design optimization of thermographic scanners.  相似文献   

5.
This paper presents a review and in-depth analysis of three of the most popular techniques for processing PT images: differential absolute contrast, thermographic signal reconstruction and pulsed phase thermography. The fundamental concepts of the three techniques are reviewed and their application on thermal data obtained from the PT inspection on a carbon fibre reinforced specimen is analysed. Furthermore, a new promissory technique based on multivariate statistical analysis is also introduced and evaluated. The performance of the techniques is evaluated in terms of the signal-to-noise ratio at maximum signal contrast.  相似文献   

6.
With the decrease of solder bumps in dimension and pitch, defects inspection of the solder bumps become more difficult. A nondestructive detection system based on the active thermography has been developed for solder bumps inspection. However, heating non-uniformities and emissivity differences may impede the defects recognition. In this paper, we propose a method using a self reference technology based on a source distribution image (SDI) to eliminate the influence of unevenness in emissivity values and heating power distribution. Three thermograms captured right after the heat pulse are averaged to create the SDI. Then the SDI is subtracted from the original thermograms, and we get the thermal contrast images, in which eight points on the edge of each hot spot are selected as the feature points for the corresponding bump. Thermal difference between the feature points and the central point are adopted to quantify the thermal behaviors of the solder bumps, by which the missing bump is distinguished from the reference bumps. The results show that it is effective using the method to eliminate the impacts of emissivity unevenness and heating non-uniformities on defects identification in the active infrared test.  相似文献   

7.
王坚强  刘邦武  夏洋  徐征 《物理学报》2014,63(1):18802-018802
传统的光伏组件为了实现发电功率最大化,安装时具有一定倾角,但在使用过程中仍有一部分光会被组件表面反射到空中造成浪费.本文设计了一种带反光板结构的高效黑硅太阳能电池组件,多角度吸光的黑硅组件配合反光板结构可以充分利用反射光线.对反光板和黑硅组件夹角进行了模拟计算,结果表明,当光伏组件安装倾角为34时,反光板安装角度为16.5最佳,同等光照条件下使得电池的发电功率增加了约39%.  相似文献   

8.
The experimental results from infrared thermography surveys over two buildings externally exposed walls are presented. Data acquisition was performed on a static configuration by recording direct and indirect solar loading during several days and was processed using advanced signal processing techniques in order to increase signal-to-noise ratio and signature contrast of the elements of interest. It is demonstrated that it is possible to detect the thermal signature of large internal structures as well as surface features under such thermographic scenarios. Results from a long-wave microbolometer compared favorably to those from a mid-wave cooled infrared camera for the detection of large subsurface features from unprocessed images. In both cases, however, advanced signal processing greatly improved contrast of the internal features.  相似文献   

9.
Local electric defects may result in considerable performance losses in solar cells. Infrared thermography is an essential tool to detect these defects on photovoltaic modules. Accordingly, IR-thermography is frequently used in R&D labs of PV manufactures and, furthermore, outdoors in order to identify faulty modules in PV-power plants. Massive amount of data is acquired which needs to be analyzed. An automatized method for detecting solar modules in IR-images would enable a faster and automatized analysis of the data.However, IR-images tend to suffer from rather large noise, which makes an automatized segmentation challenging. The aim of this study was to establish a reliable segmentation algorithm for R&D labs. We propose an algorithm, which detects a solar cell or module within an IR-image with large noise. We tested the algorithm on images of 10 PV-samples characterized by highly sensitive dark lock-in thermography (DLIT). The algorithm proved to be very reliable in detecting correctly the solar module. In our study, we focused on thin film solar cells, however, a transfer of the algorithm to other cell types is straight forward.  相似文献   

10.
In medical applications, infrared (IR) thermography is used to detect and examine the thermal signature of skin abnormalities by quantitatively analyzing skin temperature in steady state conditions or its evolution over time, captured in an image sequence. However, during the image acquisition period, the involuntary movements of the patient are unavoidable, and such movements will undermine the accuracy of temperature measurement for any particular location on the skin. In this study, a tracking approach using a template-based algorithm is proposed, to follow the involuntary motion of the subject in the IR image sequence. The motion tacking will allow to associate a temperature evolution to each spatial location on the body while the body moves relative to the image frame. The affine transformation model is adopted to estimate the motion parameters of the template image. The Lucas–Kanade algorithm is applied to search for the optimized parameters of the affine transformation. A weighting mask is incorporated into the algorithm to ensure its tracking robustness. To evaluate the feasibility of the tracking approach, two sets of IR image sequences with random in-plane motion were tested in our experiments. A steady-state (no heating or cooling) IR image sequence in which the skin temperature is in equilibrium with the environment was considered first. The thermal recovery IR image sequence, acquired when the skin is recovering from 60-s cooling, was the second case analyzed. By proper selection of the template image along with template update, satisfactory tracking results were obtained for both IR image sequences. The achieved tracking accuracies are promising in terms of satisfying the demands imposed by clinical applications of IR thermography.  相似文献   

11.
Infrared thermography (IRT) has gained more attention and become an interesting method in electrical preventive maintenance due to its high precision and sensitivity imaging characteristics. This paper provides a review of the application of IRT for diagnosing electrical equipment, including their thermal anomalies and methods of measurement. Improvement of the inspection techniques is highlighted in order to investigate the reliability of electrical equipments due to the effect of the environmental factors and equipment condition. Factors related to the target equipment and the inspection tool together with their characteristics is also presented. Due to the complex analysis, various automatic diagnostic systems are proposed for faster and more accurate analysis. Typical engineering solutions using recent technologies are reviewed which could be used to improve the quality of IRT inspection.  相似文献   

12.
Thermography has been widely used as a technique for anomaly detection in induction motors. International Electrical Testing Association (NETA) proposed guidelines for thermographic inspection of electrical systems and rotating equipment. These guidelines help in anomaly detection and estimating its severity. However, it focus only on location of hotspot rather than diagnosing the fault. This paper addresses two such faults i.e. inter-turn fault and failure of cooling system, where both results in increase of stator temperature. Present paper proposes two thermal profile indicators using thermal analysis of IRT images. These indicators are in compliance with NETA standard. These indicators help in correctly diagnosing inter-turn fault and failure of cooling system. The work has been experimentally validated for healthy and with seeded faults scenarios of induction motors.  相似文献   

13.
This paper investigates the absorbance degradation of single-junction amorphous silicon (a-Si:H) photovoltaic (PV) module, due to the presence of localized heat. The decrease in optical density is a huge challenge due to the long-term degradation of PV modules. The reduction in solar cell optical density causes a decline in its conversion efficiency. This decreases the photogenerating current, hence reduces the effective efficiency of the PV device. An infrared thermography was used for mapping the module temperature profile. Fourier transform infrared spectroscopy (FTIR) was used for the absorption characterization. The rationale behind the outdoor deployment was to deduce a practical effect of hot spot formation on the module’s absorption ability. The results show a direct correlation between localized heat and the absorption degradation.  相似文献   

14.
For the long-pulse high-confinement discharges in tokamaks, the equilibrium of plasma requires a contact with the first wall materials. The heat flux resulting from this interaction is of the order of 10 MW/m2 for steady state conditions and up to 20 MW/m2 for transient phases. The monitoring on surface temperatures of the plasma facing components (PFCs) is a major concern to ensure safe operation and to optimize performances of experimental operations on large fusion facilities. Furthermore, this measurement is also required to study the physics associated to the plasma material interactions and the heat flux deposition process. In tokamaks, infrared (IR) thermography systems are routinely used to monitor the surface temperature of the PFCs. This measurement requires an accurate knowledge of the surface emissivity. However, and particularly for metallic materials such as tungsten, this emissivity value can vary over a wide range with both the surface condition and the temperature itself, which makes instantaneous measurement challenging. In this context, the multi-spectral infrared method appears as a very promising alternative solution. Indeed, the system has the advantage to carry out a non-intrusive measurement on thermal radiation while evaluating surface temperature without requiring a mandatory surface emissivity measurement.In this paper, a conceptual design for the multi-spectral infrared thermography is proposed. The numerical study of the multi-channel system based on the Levenberg-Marquardt (LM) nonlinear curve fitting is applied. The numerical results presented in this paper demonstrate the design allows for measurements over a large temperature range with a relative error of less than 10%. Furthermore, laboratory experiments have been performed from 200 °C to 740 °C to confirm the feasibility for temperature measurements on stainless steel and tungsten. In these experiments, the unfolding results from the multi-channel detection provide good performance on temperature measurement, which supports our numerical evaluation and demonstrates the potential feasibility for metallic surface high temperature measurement with this method.  相似文献   

15.
Infrared (IR) thermography is a two-dimensional, non-contact technique of temperature measurement which can be usefully exploited in a vast variety of heat transfer industrial applications as well as research fields. The present work focuses attention on thermal surface flow visualizations of several types of fluid flow studied by means of the IR imaging system and in particular: the flow over a delta wing at angle of attack; the flow generated by a disk rotating in still air; air jets impinging on a flat wall; the flow inside a 180deg turn in astatic channel with, or without, turbulence promoters; the flow inside a 180deg turn in arotating square channel. Each flow visualization is illustrated through thermographic images and/or Nusselt number maps. The emphasis is on the capability of the infrared system to study: laminar-to-turbulent transition and location of primary and secondary vortices over the delta wing at angle of attack; the spiral vortical structure developing at transition over the disk; azimuthal structures arising for certain jet conditions; the influence of the channel aspect ratio (width to height ratio) on the heat transfer coefficient distribution along the 180deg turn, as well as the influence of ribs, in the case ofstatic channel; the influence of rotation for the rotating channel.  相似文献   

16.
Total emissivity measurements without use of an absolute reference   总被引:1,自引:0,他引:1  
Total emissivity measurement by ordinary steady state radiometric methods are difficult at low temperature; besides, those methods require an emissivity reference. In this paper, several new periodic methods suitable for total emissivity measurements are presented. First it is shown that the thermal modulation of a sample allows direct emissivity measurements, even at low temperature, with an ordinary equipment involving no cooled vessel. Very accurate measurements have been performed within a few minutes at room temperature, on reflective materials. Second, it is shown that indirect total emissivity measurements are also feasible, provided source and sample temperatures are equal. This condition can be fulfilled with a modulated temperature hemispherical gray surface as IR source, or in a simpler way, with a mobile part of a hemisphere. Third, it is shown that if both sample and source temperatures are modulated, simultaneous direct and indirect measurements can be carried out. This results in an absolute emissivity measurement without reference. As an experimental validation, simultaneous direct and indirect measurements of the total directional emissivity are carried out on three samples at room temperature. Periodic radiometry methods are found to be reliable and accurate, emission and reflection measurements giving the same result.  相似文献   

17.
Radiation heat transfer is one of the most important heat transfer modes in high-temperature applications. It is a strongly non-linear process, which depends on the temperature and emissivity of heat exchange surfaces, their geometrical configuration and properties of the surrounding atmosphere. Heat exchange intensity between the surfaces depends mainly on their temperature differences. However, their emissivities influence significantly the radiation heat transfer process as well. Emissivity is a function of surface state or atmospheric chemical reactions, temperature and wavelengths. Because of these non-linearities, it is very complicated to evaluate such a real problem by numerical simulation, and experimental work seems to be the most reliable evaluation procedure. We applied special high-temperature coatings of different emissivities on furnace walls to evaluate the dependence between the furnace wall emissivity and steel charge heating. The emissivity analyses of the coatings used and emissivity measurement results in dependence on wavelength are presented in this paper. The dependence of the charge heating on the furnace wall emissivity, the importance of emissivity wavelength dependence and significant differences of the emissivity effect in electrical and gas heated furnaces are shown. The possible consequences and practical benefits are also discussed in this paper.  相似文献   

18.
Coatings have been widely used in modern industry and it plays an important role. Coatings thickness is directly related to the performance of the functional coatings, therefore, rapid and accurate coatings thickness inspection has great significance. Existing coatings thickness measurement method is difficult to achieve fast and accurate on-site non-destructive coatings inspection due to cost, accuracy, destruction during inspection and other reasons. This paper starts from the introduction of the principle of lock-in thermography, and then performs an in-depth study on the application of lock-in thermography in coatings inspection through numerical modeling and analysis. The numerical analysis helps explore the relationship between coatings thickness and phase, and the relationship lays the foundation for accurate calculation of coatings thickness. The author sets up a lock-in thermography inspection system and uses thermal barrier coatings specimens to conduct an experiment. The specimen coatings thickness is measured and calibrated to verify the quantitative inspection. Experiment results show that the lock-in thermography method can perform fast coatings inspection and the inspection accuracy is about 95%. Therefore, the method can meet the field testing requirements for engineering projects.  相似文献   

19.
Composite patches are widely used to repair damaged metal structures, especially in aerospace industry. Perfect patch and bonding are necessary to achieve an effective repair. Various thermographic methods such as step heating thermography are commonly applied to inspect repaired structures. Since accurate determination of defect features are admirable, some techniques are used to process the thermal films. In this study, three common post processing techniques of thermography (namely, principle component analysis (PCA), pulse phase thermography (PPT) and thermal signal reconstruction (TSR)) have been utilized to inspect an aluminum plate repaired with carbon/epoxy patches. Several delaminations with various sizes and locations along with some disbond defects were artificially embedded in five samples of composite patches to experimentally investigate the performance of the three techniques for post-processing of the step heating thermography data. Furthermore, the outputs of the mentioned processing techniques were quantitatively compared to find the most effective one. Based on the comparison results, it was demonstrated that, TSR outputs leads to the more accurate defect sizing.  相似文献   

20.
The present study continues the work described in part I of this paper in evaluating a long-term-experiment, where a rotor blade segment of a wind turbine is exposed to the elements and thereby monitored with passive thermography. First, it is investigated whether subsurface features in rotor blades – mainly made of GFRP – can generally be detected with thermography from greater distances under favorable conditions. The suitability of the sun for acting as a heat source in applying active thermography has been tested in the previous study. In this study, the climatic influence on thermographic measurement is evaluated. It is demonstrated that there are favorable and unfavorable circumstances for imaging thermal contrasts which reflect inner structures and other subsurface features like potential defects. It turns out that solar radiation serves as a very effective heat source, but not at all times of day. Other environmental influences such as diurnal temperature variations also create temperature contrasts that permit conclusions on subsurface features. Particular scenarios are reconstructed with FEM-simulations in order to gain deeper insight into the driving mechanisms that produce the observed thermal contrasts. These investigations may help planning useful outdoor operations for inspecting rotor blades with thermography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号