首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on measurements of the spatially resolved characterization of flux-pinning induced strain of rectangular-shaped bulk YBCO samples. The spatially resolved strain measurements are accomplished by the use 2 fiber Bragg grating arrays, which are with an included angle of 45° fixed to the surface.In this paper first attempts to confirm the shape distortions caused by the flux-pinning induced strain as predicted in [1], [2] will be presented. Two sample setups, a single bulk and a “mirror” arrangement, will be compared. This mirror setup represents a model configuration for a measurement inside the superconductor, where demagnetization effects can be neglected and the magnetic field merely has a z-component.  相似文献   

2.
An active omnidirectional vision owns the advantages of the wide field of view (FOV) imaging, resulting in an entire 3D environment scene, which is promising in the field of robot navigation. However, the existing omnidirectional vision sensors based on line laser can measure points only located on the optical plane of the line laser beam, resulting in the low-resolution reconstruction. Whereas, to improve resolution, some other omnidirectional vision sensors with the capability of projecting 2D encode pattern from projector and curved mirror. However, the astigmatism property of curve mirror causes the low-accuracy reconstruction. To solve the above problems, a rotating polygon scanning mirror is used to scan the object in the vertical direction so that an entire profile of the observed scene can be obtained at high accuracy, without of astigmatism phenomenon. Then, the proposed method is calibrated by a conventional 2D checkerboard plate. The experimental results show that the measurement error of the 3D omnidirectional sensor is approximately 1 mm. Moreover, the reconstruction of objects with different shapes based on the developed sensor is also verified.  相似文献   

3.
The model of two-Cassegrain-telescopes system used in a relay mirror system is established and the theory of beam shaping for the relay mirror system as well as optimization control algorithm is analyzed. Experiment of the reduced-scale relay mirror system with 3 mm-caliber transmitter and 0.27 m propagation distance was done. The results show that power coupling efficiency of the system without beam shaping is 72.67% and power coupling efficiency of the system with beam shaping is 84.14%.  相似文献   

4.
An automatic coarse-alignment method for a tilt series of rod-shaped specimen collected with a full angular range (from α = ?90° to +90°, α is the tilt angle of the specimen) is presented; this method is based on a cross-correlation method and uses the outline of the specimen shape. Both the rotational angle of the tilt axis and translational value of each image can be detected in the images without the use of markers. This method is performed on the basis of the assumption that the images taken at α = ?90° and α =  + 90° are symmetric about the tilt axis. In this study, a carbon rod on which gold particles have been deposited is used as a test specimen for the demonstration. This method can be used as an automatic coarse-alignment method prior to the application of a highly accurate alignment method because the alignment procedure can be performed automatically except for the initial setup of some parameters.  相似文献   

5.
This paper proposes a new bandgap reference (BGR) circuit which adopts a cascode current mirror biasing for reducing the reference voltage variation and a novel sizing method for reducing the PNP BJT area. The proposed BGR was designed and fabricated using 0.18 μm triple-well CMOS process which provides only normal VTH transistors.The reference voltage variation of BGR was reduced from 0.5 mV (conventional) to 0.09 mV (proposed) using cascode current mirror biasing method. And the ratio of BJT emitter areas was reduced by a factor of 20 through the novel sizing method.  相似文献   

6.
Present study is devoted on the efficient application of Sn (O, S)-NPs -AC for simultaneous sonicated accelerated adsorption of some dyes from single and multi-components systems. Sn (O, S) nanoparticles characterization by FESEM, EDX, EDX mapping and XRD revel its nano size structure with high purity of good crystallinity. Present adsorbent due to its nano spherical shape particles with approximate diameter of 40–60 nm seems to be highly effective in this regard. The effects of five variables viz. pH (3.5–9.5), 0.010–0.028 g of adsorbent and 0.5–6.5 min mixing by sonication is good and practical conditions for well and expected adsorption of MB and CV over concentration range of 3–15 mg L−1. Combination of response surface methodology (RSM) based on central composite design (CCD) and subsequent of analysis of variance (ANOVA) and t-test statistics were used to test the significance of the independent variables and their interactions. Regression analysis reveal that experimental data with high repeatability and efficiency well represented by second-order polynomial model with coefficient of determination value of 0.9988 and 0.9976 for MB and CV, respectively following conditions like pH 8.0, 0.016 g adsorbent, 15 mg L−1 of both dyes 4 min sonication time is proportional with achievement of experimental removal percentage of 99.80% of MB and 99.87% of CV in batch experiment. Evaluation and estimation of adsorption data with Langmuir and Freundlich isotherm well justify the results based on their correlation coefficient and error analysis confirm that Langmuir model is good model with adsorption capacity of 109.17 and 115.34 mg g−1 in single system and 95.69 and 102.99 mg g−1 in binary system for MB and CV, respectively. MB and CV kinetic and rate of adsorption well fitted by pseudo-second order equation both in single and binary systems and experimental results denote more and favorable adsorption of CV than respective value in single system. The pseudo-second-order rate constant k2 in binary system larger than single system.  相似文献   

7.
Guided wave mode selection for data transfer along a liquid-filled pipe is analyzed in detail on the basis of the propagation properties of the guided waves in the pipe. The combination of frequency hopping spread spectrum and Turbo code is adopted to overcome the multipath interference with long time delay of the liquid-filled pipe channel. A Turbo coded frequency hopping data transfer system using the guided wave in the liquid-filled pipe is constructed. Experimental results indicate that the data transfer rate of the system can reach 250 bit/s and its bit error rate (BER) can be lower than 10?5 if the signal-to-noise ratio (SNR) of the received signal is greater than 6 dB.  相似文献   

8.
An explicit finite-volume solver is proposed for numerical simulation of non-hydrostatic atmospheric dynamics with promise for efficiency on massively parallel machines via low communication needs and large time steps. Solving the governing equations with a single stage lowers communication, and using the method of characteristics to follow information as it propagates enables large time steps. Using a non-oscillatory interpolant, the method is stable without post-hoc filtering. Characteristic variables (built from interface flux vectors) are integrated upstream from interfaces along their trajectories to compute time-averaged fluxes over a time step. Thus we call this method a Flux-Based Characteristic Semi-Lagrangian (FBCSL) method. Multidimensionality is achieved via a second-order accurate Strang operator splitting. Spatial accuracy is achieved via the third- to fifth-order accurate Weighted Essentially Non-Oscillatory (WENO) interpolant.We implement the theory to form a 2-D non-hydrostatic compressible (Euler system) atmospheric model in which standard test cases confirm accuracy and stability. We maintain stability with time steps larger than CFL = 1 (CFL number determined by the acoustic wave speed, not advection) but note that accuracy degrades unacceptably for most cases with CFL > 2. For the smoothest test case, we ran out to CFL = 7 to investigate the error associated with simulation at large CFL number time steps. Analysis suggests improvement of trajectory computations will improve error for large CFL numbers.  相似文献   

9.
This paper describes new measurements and modelling of the absorption of methane gas, one of the most important gases observed in the atmospheres of the outer planets and Titan, between 9000 and 14,000 cm?1 (0.7 to 1.1 μm) and compares them with current best available spectral models.A series of methane spectra were measured at the UK's Natural Environment Research Council (NERC) Molecular Spectroscopy Facility (based at the Rutherford Appleton Laboratory, Oxfordshire, UK) using a Brüker 125HR Fourier transform spectrometer. To approximate the conditions found in outer planet atmospheres, the spectra were measured over a wide range of pressures (5 bar to 38 mbar) and temperatures (290–100 K) with path lengths of 19.3, 17.6, 16.0 and 14.4 m. The spectra were recorded at a moderate resolution of 0.12 cm?1 and then averaged to 10 cm?1 resolution prior to fitting a series of increasingly complex band-models including temperature dependence. Using the most complex model, a Goody line distribution with a Voigt line shape and two lower energy state levels, the typical rms residual error in the fit is between 0.01 and 0.02 in the wings of the main absorption bands.The new spectral parameters were then compared with the measured spectra and spectra calculated using existing data and shown to be able to accurately reproduce the measured absorption. The improvement in the temperature dependence included in the model is demonstrated by comparison with existing cold methane spectral data for a typical Jovian path.  相似文献   

10.
Statistically Optimal Nearfield Acoustical Holography (SONAH) can be used to reconstruct three-dimensional sound fields by projecting two-dimensional data measured on a “small” aperture that partially covers a composite sound source in a “static” fluid medium. Here, an improved SONAH procedure is proposed that includes the mean flow effects of a moving fluid medium while the sound source and receivers are stationary. The backward projection performance of the proposed procedure is further improved by using a wavenumber filter to suppress subsonic noise components. Through numerical simulations at Mach 0.6, it is shown that the improved procedure can accurately reconstruct sound source locations and radiation patterns: e.g., the spatially averaged reconstruction errors of the conventional and improved SONAH procedures are 15.40 dB and 0.19 dB, respectively, for a monopole simulation and 21.60 dB and 0.19 dB for an infinite-size panel. The wavenumber filter further reduces spatial noise, e.g., decreasing the reconstruction error from 1.73 dB to 0.19 dB for the panel simulation. An existing data measured in a wind tunnel operating at Mach 0.12 is reused for the validation. The locations and radiation patterns of the two loudspeakers are successfully identified from the sound fields reconstructed by using the proposed SONAH procedure.  相似文献   

11.
12.
This paper studies the decoupling error associated with the atmospheric correction procedures in the ocean color remote sensing algorithms. The decoupling error is caused by the lack of proper consideration of multiple scattering between the atmospheric and ocean components. In other words, the atmosphere and ocean are not coupled properly. A vector radiative transfer model for the coupled atmosphere and ocean (CAO) system based on the successive order of scattering (SOS) method is used to study the error. The inherent optical properties (IOPs) of the ocean are provided by the most updated bio-optical models. Two wavelengths are used in the study, 412 and 555 nm. For a detector located just above the ocean interface, the decoupling errors range from 0.3% to 7% at 412 nm; and from 0.3% to 3 % at 555 nm for zenith viewing angles smaller than 70°. The decoupling errors are significantly larger for larger zenith viewing angles for this detector. For a detector at the top of the atmosphere (TOA), it is hard to separate the decoupling error from the error introduced by the diffuse transmittance. If we assume the upwelling radiance is uniform just below the ocean surface when estimating the diffuse transmittance, the decoupling errors are from ?4% to 8% for zenith viewing angles smaller than 70°; and negative decoupling errors show up at mainly large zenith viewing angles.  相似文献   

13.
A polarization insensitive hollow optical waveguide is proposed. The propagation characteristics of orthogonal polarizations in the hollow waveguide are effectively controlled in simulation to provide polarization insensitivity by tailoring the parameters associated with the two mirrors—a high-index contrast grating (HCG) mirror and a distributed Bragg reflecting (DBR) mirror, on either side of an air-core. The polarization insensitivity is evidenced by a low polarization dependence loss of 1.36 dB/cm and a low modal birefringence of 1.01 × 10? 4.  相似文献   

14.
This work is about fabrication of ZnO nanostructures (ZnO-NS) via a simple sonochemical method. The chemicals used for the synthesis of various shaped ZnO are Zn salt, sodium hydroxide and ammonia solution without other structure directing agent or surfactant needed. This method is feasible and green, as it does not require high temperature and/or highly toxic chemicals. The shape of the ZnO-NS can be tuned by adjusting the ultrasound energy dissipated via varying the ultrasonication time from 5 to 60 min. It was found that uniform ZnO nanorods with diameter around 50 nm were formed after 15 min of ultrasonication while flowerlike ZnO-NS was formed after 30 min. This method produces high quality ZnO-NS with controllable shapes, uniformity, and purity.  相似文献   

15.
A Ytterbium-doped linearly-polarized fiber laser is constructed with a polarization maintaining fiber Sagnac loop mirror. The fiber loop mirror made of polarization maintaining fiber coupler has a polarization dependent reflectivity, which provides the necessary polarization discrimination between the slow and fast axes. With a fiber Bragg grating written in normal polarization maintaining fiber as an output coupler, laser output of up to 5.6 W at 1070 nm is generated with a polarization extinction ratio of > 20 dB and an overall efficiency of 55%. The broadband polarization dependent reflection of the fiber loop mirror offers advantages of easy spectral tuning and simple linearly-polarized laser generation.  相似文献   

16.
In this paper, basing on tap delay lines filter model and model spatial coupling theory, we build up a novel analytical model for an intensity modulated and direct detected multiple-input–multiple-output (IM-DDMIMO) system over multimode fiber. At the receiver side, time related zero forcing (ZF) equalization was used to recover signals. With this model, we theoretically and by simulation analyzed a 2 × 2 multimode fiber MIMO system utilizing offset launching scheme. It's found that two received streams can be well recovered by equalization. Compared with traditional single-input–single-output (SISO) system, such 2 × 2MIMO system can provide at least 5 dB Bit error rate (BER) performance improvement.  相似文献   

17.
Sonoporation (membrane perforation via ultrasonic cavitation) is known to be realizable in plant cells on a reversible basis. However, cell viability may concomitantly be affected over the process, and limited knowledge is now available on how such cytotoxic impact comes about. This work has investigated how sonoporation may affect plant cells at a subcellular level and in turn activate programmed cell death (PCD). Tobacco BY-2 cells were used as the plant model, and sonoporation was applied through a microbubble-mediated approach with 100:1 cell-to-bubble ratio, free-field peak rarefaction pressure of either 0.4 or 0.9 MPa, and 1 MHz ultrasound frequency (administered in pulsed standing-wave mode at 10% duty cycle, 1 kHz pulse repetition frequency, and 1 min duration). Fluoroscopy results showed that sonoporated tobacco cells may undergo plasma membrane depolarization and reactive oxygen species elevation (two cellular disruption events closely connected to PCD). It was also found that the mitochondria of sonoporated tobacco cells may lose their outer membrane potential over time (observed using confocal microscopy) and consequently release stores of cytochrome-c proteins (determined by Western Blotting) into the cytoplasm to activate PCD. These findings provide insight into the underlying mechanisms responsible for sonoporation-induced cytotoxicity in plant cells. They should be taken into account when using this membrane perforation approach for gene transfection applications in plant biotechnology.  相似文献   

18.
One-dimensional (1D) photonic crystal (PC) microcavities can be readily embedded into silicon-on-insulator waveguides for photonic integration. Such structures are investigated by 2D Finite-Difference Time-Domain method to identify designs with high transmission which is essential for device integration. On-resonance transmission is found to decrease with the increasing mirror pairs, however, the quality factor (Q) increases to a saturated value. The addition to the Bragg mirrors of tapered periods optimized to produce a cavity mode with a near Gaussian shaped envelope results in a major reduction in vertical loss. Saturated Q up to 2.4 × 106 is feasible if the internal tapers are properly designed. The effect of increasing transmission is also demonstrated in a structure with the external tapers.  相似文献   

19.
We demonstrate a facile one-step method to synthesize Ni@Pt core–shell nanoparticles (NPs) with a control over the shape and the Pt-shell thickness of the NPs. By adjusting the relative reactivity of the Pt and Ni reagents in ultrasound-assisted polyol reactions, two Ni@Pt NP samples of the same composition (Ni/Pt = 1) and size (3–4 nm) but with different particle shape (octahedral vs. truncated octahedral) and different Pt-shell thicknesses (1–2 vs. 2–3 monolayer) are obtained. The control is achieved by using different Ni reagents, Ni(acac)2 (acac = acetylacetonate) and Ni(hfac)2 (hfac = hexafluoroacetylacetonate). A reaction mechanism that can explain all of the observations is proposed. The Ni@Pt NPs show up to threefold higher mass activity than pure Pt NPs in oxygen reduction reaction. Between the two Ni@Pt NP samples, the one composed of octahedral NPs with the thicker Pt-shell has higher activity than the other.  相似文献   

20.
We have investigated the mechanical and acoustic properties of human teeth using the laser generation of surface acoustic wave (SAW) technique. The materials investigated included normal and decayed teeth, which have similar grain sizes and different thicknesses. The tissue responds to the laser-induced stress by thermoelastic expansion. The informative features of this method allow one to determine sample thermal, optical, and acoustical properties that depend on the peculiarities of the sample compositional structure. An interferometric detection experimental scheme is applied for detection generated SAW pulses. The surface displacement curves shape of normal and decayed human teeth are shown. The dispersion curves for SAW pulses were determined by Fourier analysis. The result is an almost linear dependence of SAW velocity on frequency for a normal tooth, the magnitude of the thermoelastic expansion of the normal tooth reaches its peak at 0.344 μs, a SAW phase velocity of 2500 ms?1 between 0.0008 and 5 MHz was determined. For abnormal teeth, the magnitude of thermoelastic expansion of the normal tooth reaches its peak at 1.3 μs, the measured velocity was 3225 ms?1. Due to the inhomogeneity of abnormal teeth perpendicular to the propagation direction, strong differences in their dispersion curves were obtained. The detection of acoustic waves is the basis of photoacoustic methods, which can be used for diagnostic purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号